已知球面上有三點(diǎn)A、B、C,AB=6cm,BC=8cm,AC=10cm,且球心O到平面ABC的距離為12,則球的半徑為(  )
分析:“AB=6cm,BC=8cm,CA=10cm”這是一個(gè)常用的直角三角形的長度組合,故AC即為A、B、C三點(diǎn)所在圓的直徑,取AC的中點(diǎn)M,連接OM,則OM即為球心到平面ABC的距離,在Rt△OMA中,OM=13cm,MA=5cm,則OA=13cm.
解答:解:如圖所示:
∵AB=6 cm,BC=8cm,CA=10cm,
∴∠CBA=90°
∴取AC的中點(diǎn)M,則球面上A、B、C三點(diǎn)所在的圓即為⊙M,連接OM,則OM即為球心到平面ABC的距離,
在Rt△OMA中,OM=13cm,MA=5cm,
∴OA=13cm,即球球的半徑為13cm.
故選A.
點(diǎn)評(píng):本題考查球的有關(guān)計(jì)算問題,點(diǎn)到平面的距離,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知球面上有三點(diǎn)A、B、C,此三點(diǎn)構(gòu)成一個(gè)邊長為l的等邊三角形,球心到平面ABC的距離等于球半徑
1
3
,則球半徑是
6
4
6
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球面上有三點(diǎn)A,B,C且AB=6cm,BC=8cm,CA=10cm,若球心到平面ABC距離為7cm,則此球的表面積為
296π
296π
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球面上有三點(diǎn)A、B.C,此三點(diǎn)構(gòu)成一個(gè)邊長為1的等邊三角形,球心到平面ABC的距離等于球半徑的
1
3
,則球半徑是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年四川省成都市七校協(xié)作體高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知球面上有三點(diǎn)A,B,C且AB=6cm,BC=8cm,CA=10cm,若球心到平面ABC距離為7cm,則此球的表面積為    cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案