(12分)如圖,已知圓C:,定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足=,?=0,點N的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若過定點A(1,0)的直線交曲線E于不同的兩點G、H,
且滿足∠GOH為銳角,求直線的斜率k的取值范圍.
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省遵義四中高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)如圖,已知正方形ABCD和矩形ACEF所在平面互相垂直,
AB=,AF=1,M是線段EF的中點。
(Ⅰ)求證:AM∥平面BDE;
(Ⅱ) 求二面角A-DF-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆云南省昆明一中高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐的底面是正方形,,且,點分別在側(cè)棱、上,且。
(Ⅰ)求證:;
(Ⅱ)若,求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐的底面是正方形,,且,點分別在側(cè)棱、上,且。
(Ⅰ)求證:;
(Ⅱ)若,求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年浙江省杭州市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
如圖,已知中,,平面,
分別為上的動點.
(1)若,求證:平面平面;
(2)若,,求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省五校高三第四次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90O,∠EAC=600,AB=AC=AE.
(1)在直線BC上是否存在一點P,使得DP∥平面EAB?請證明你的結(jié)論;
(2)求平面EBD與平面ABC所成的銳二面角的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com