【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).若不等式恒成立,則的最小值為_______.
【答案】
【解析】
求出,可得當(dāng)時,,在 上為增函數(shù),
從而是不可能恒成立的.,當(dāng)時,由,得,此時函數(shù)單調(diào)遞增,由,得,此時函數(shù)單調(diào)遞減,可得出函數(shù)的最大值,從而得到,設(shè),然后求導(dǎo)得出函數(shù)的最小值即可.
函數(shù),其中為自然對數(shù)的底數(shù)
則,
當(dāng)時,,在 上為增函數(shù),
又當(dāng) 時,所以是不可能恒成立的.
當(dāng)時,由,得,此時函數(shù)單調(diào)遞增.
由,得,此時函數(shù)單調(diào)遞減.
所以
由不等式恒成立,即恒成立.
即恒成立,
所以
設(shè),則
設(shè),則
由得, ,此時函數(shù)單調(diào)遞增,
由得, ,此時函數(shù)單調(diào)遞減,
所以
又當(dāng)時,,,當(dāng)時,.
所以當(dāng) 時,,單調(diào)遞減.
當(dāng) 時,,單調(diào)遞增.
所以
所以的最小值為:.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,拋物線上存在一點 到焦點的距離等于.
(1)求拋物線的方程;
(2)已知點在拋物線上且異于原點,點為直線上的點,且.求直線與拋物線的交點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,已知.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列是等差數(shù)列;
(3)設(shè)數(shù)列滿足的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即,其中a、b、c分別為內(nèi)角A、B、C的對邊.若,,則面積S的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線的方程為.
(1)求證:不論為何值,直線必過一定點;
(2)若直線分別與軸正半軸,軸正半軸交于點,,當(dāng)而積最小時,求的周長;
(3)當(dāng)直線在兩坐標(biāo)軸上的截距均為整數(shù)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)為的導(dǎo)函數(shù),討論的零點個數(shù);
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于回歸分析,下列說法錯誤的是( )
A.在殘差圖中,縱坐標(biāo)表示殘差
B.若散點圖中的一組點全部位于直線的圖象上,則相關(guān)系數(shù)
C.若殘差平方和越小,則相關(guān)指數(shù)越大
D.在回歸分析中,變量間的關(guān)系若是非確定關(guān)系,那么因變量不能由自變量唯一確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一段“三段論”,其推理是這樣的:對于可導(dǎo)函數(shù),若,則是函數(shù)的極值點,因為函數(shù)滿足,所以是函數(shù)的極值點”,結(jié)論以上推理
A. 大前提錯誤B. 小前提錯誤C. 推理形式錯誤D. 沒有錯誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 C:的離心率為,以短軸為直徑的圓被直線 x+y-1 = 0 截得的弦長為.
(1) 求橢圓 C 的方程;
(2) 設(shè) A, B 分別為橢圓的左、右頂點, D 為橢圓右準線 l 與 x 軸的交點, E 為 l上的另一個點,直線 EB 與橢圓交于另一點F,是否存在點 E,使 R)? 若存在,求出點 E 的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com