已知O為△ABC的外接圓圓心,AB=2,AC=1,∠BAC=120°,若向
AO
=λ1
AB
+λ2
AC
,則λ21=
1
2
1
2
分析:建立直角坐標(biāo)系,求出三角形各頂點(diǎn)的坐標(biāo),因?yàn)镺為△ABC的外心,把AB的中垂線 m方程和AC的中垂線 n的方程,聯(lián)立方程組,求出O的坐標(biāo),利用已知向量間的關(guān)系,待定系數(shù)法求λ1,λ2的值.
解答:解:如圖:以A為原點(diǎn),以AB所在的直線為x軸,建立直角系:
則A(0,0),B (2,0),C(-
1
2
3
2
),
∵O為△ABC的外心,
∴O在AB的中垂線m:x=1,又在AC的中垂線l上,
AC的中點(diǎn)(-
1
4
,-
3
4
),AC的斜率為tan120°=-
3
,
∴中垂線l的方程為 y=
3
3
(x+
1
4
)+
3
4

把直線 m和l 的方程聯(lián)立方程組
x=1
y=
3
3
(x+
1
4
)+
3
4
,
解得△ABC的外心O(1,
2
3
3
),
由條件
AO
=λ1
AB
+λ2
AC

得(1,
2
3
3
)=λ1(2,0)+λ2(-
1
2
3
2

1=2λ1-
1
2
λ2
2
3
3
=
3
2
λ2
,
∴,解得λ1=
5
6
,λ2=
4
3
,
∴λ21=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查求兩條直線的交點(diǎn)坐標(biāo)的方法,三角形外心的性質(zhì),向量的坐標(biāo)表示及向量相等的條件,待定系數(shù)法求參數(shù)值.屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為△ABC所在平面外一點(diǎn),且
OA
=
a
,
OB
=
b
OC
=
c
,OA,OB,OC兩兩互相垂直,H為△ABC的垂心,試用
a
,
b
c
表示
OH

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•道里區(qū)三模)已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB
,若四面體P-ABC的體積為
3
2
,則該球的體積為
4
3
π
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四面體P-ABC的外接球的球心O在AB上,且PO⊥面ABC,2AC=
3
AB
,若四面體P-ABC的體積為
3
2
,則P、C兩點(diǎn)間的球面距離為
3
2
п
3
2
п

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林二模)已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB,若四面體P-ABC的體積為
3
2
,則該球的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC的外心,P是平面ABC外的一點(diǎn),且PA=PB=PC,α是經(jīng)過(guò)PO的任意一個(gè)平面,則α與平面ABC所成的角為_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案