若拋物線
的焦點與雙曲線
的左焦點重合,則實數(shù)
=
.
試題分析:雙曲線
的左焦點(-2,0),所以
=-2,
=-4.
點評:基礎(chǔ)題,先確定雙曲線的左焦點坐標(biāo),再利用
的焦點坐標(biāo)為(
,0)求p.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)如圖,在平面直坐標(biāo)系
中,已知橢圓
,經(jīng)過點
,其中
e為橢圓的離心率.且橢圓
與直線
有且只有一個交點。
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)不經(jīng)過原點的直線
與橢圓
相交與
A,
B兩點,第一象限內(nèi)的點
在橢圓上,直線
平分線段
,求:當(dāng)
的面積取得最大值時直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,橢圓的中心在坐標(biāo)原點0,頂點分別是A
1, A
2, B
1, B
2,焦點分別為F
1 ,F
2,延長B
1F
2 與A
2B
2交于P點,若
為鈍角,則此橢圓的離心率的取值范圍為
A.(0,) | B.(,1) |
C.(0,) | D.(,1) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的一個頂點為
,離心率為
.直線
與橢圓
交于不同的兩點M,N.
(Ⅰ)求橢圓
的方程;
(Ⅱ)當(dāng)△AMN得面積為
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的右焦點為
,則該雙曲線的漸近線方程為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)過點
作直線
與拋物線
相交于兩點
,圓
(1)若拋物線在點
處的切線恰好與圓
相切,求直線
的方程;
(2)過點
分別作圓
的切線
,
試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
拋物線C:
被直線l:
截得的弦長為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
已知中心在原點
O,焦點在
x軸上的橢圓
E過點(1,
),離心率為
.
(Ⅰ)求橢圓
E的方程;
(Ⅱ)直線
x+
y+1=0與橢圓
E相交于
A、B(
B在
A上方)兩點,問是否存在直線
l,使
l與橢圓相交于
C、D(
C在
D上方)兩點且
ABCD為平行四邊形,若存在,求直線
l的方程與平行四邊形
ABCD的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
的焦點坐標(biāo)是 ( )
A.(–2,0),(2,0) | B.(0,–2),(0,2) |
C.(0,–4),(0,4) | D.(–4,0),(4,0) |
查看答案和解析>>