半徑和面積均為1的扇形的圓心角為
2
2
弧度.
分析:半徑為r的扇形圓心角的弧度數(shù)為α,則它的面積為S=
1
2
αr2,由此結(jié)合題中數(shù)據(jù),建立關(guān)于圓心角的弧度數(shù)α的方程,解之即得該扇形的圓心角的弧度數(shù).
解答:解:設(shè)扇形圓心角的弧度數(shù)為α,
則扇形面積為S=
1
2
αr2=
1
2
α×12
=1
解之,得α=2
故答案為:2
點(diǎn)評(píng):本題在已知扇形的面積和半徑的情況下,求該扇形圓心角的弧度數(shù).著重考查了弧度制的定義和扇形面積公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-2ax+5(a>1)
(Ⅰ)若f(x)的定義域和值域均為[1,a],求a的值;
(Ⅱ)若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對(duì)任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,d為公差且不為0,a1和d均為實(shí)數(shù),它的前n項(xiàng)和記作Sn,設(shè)集合A={(an,
Sn
n
)|n∈N*},B={(x,y)|
1
4
x2-y2=1,x,y∈R}.試問下列結(jié)論是否正確,如果正確,請(qǐng)給予證明;如果不正確,請(qǐng)舉例說明:
(1)若以集合A中的元素作為點(diǎn)的坐標(biāo),則這些點(diǎn)都在同一條直線上;
(2)A∩B至多有一個(gè)元素;
(3)當(dāng)a1≠0時(shí),一定有A∩B≠∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-x4
|x-2|-2
.給出函數(shù)f(x)下列性質(zhì):(1)函數(shù)的定義域和值域均為[-1,1];(2)函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱;(3)函數(shù)在定義域上單調(diào)遞增;(4)Af(x)dx=0(其中A為函數(shù)的定義域);(5)A、B為函數(shù)f(x)圖象上任意不同兩點(diǎn),則
2
<|AB|≤2
.請(qǐng)寫出所有關(guān)于函數(shù)f(x)性質(zhì)正確描述的序號(hào)
(2)(4)
(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.函數(shù)f(x)=
x2-x4
|x-2|-2
.給出函數(shù)f(x)下列性質(zhì):(1)f(x)的定義域和值域均為[-1,1];(2)f(x)是奇函數(shù);(3)函數(shù)在定義域上單調(diào)遞增;(4)函數(shù)f(x)有兩零點(diǎn);(5)A、B為函數(shù)f(x)圖象上任意不同兩點(diǎn),則
2
<|AB|≤2
.則函數(shù)f(x)有關(guān)性質(zhì)中正確描述的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案