已知圓C1的方程為(x+1)2+y2=16,圓C2的方程為(x-1)2+y2=4,動圓P經(jīng)過圓C2的圓心且與圓C1相內(nèi)切.

(Ⅰ)求動圓P的圓心的軌跡C的方程;

(Ⅱ)設(shè)M 、N是(Ⅰ)中的軌跡C上的兩點,若,其中O是坐標(biāo)原點,求直線MN的方程.

解:(Ⅰ)根據(jù)已知,動圓⊙P的半徑小于⊙C1的半徑,

∴|PC1|+|PC2|=4>|C1C2|,

由橢圓的定義知,點P的軌跡C是以C1(-1,0)、C2(1,0)為焦點,長軸長為4的橢圓. 

∴P的軌跡C的方程為

(Ⅱ)設(shè)M(x1,y1),N(x2,y2),

∵M(jìn)、N是C上兩點,

            ①

               ②

∴x1+2x2=-3                   ③,   

y1+2y2=0.                      ④ 

由①②③④,得,

∴直線MN的斜率 

當(dāng)時,,直線MN的方程為

當(dāng)時,,直線MN的方程為

∴直線MN的方程為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓C1的方程為(x-4)2+(y-1)2=
32
5
,橢圓C2的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,其離心率為
3
2
,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑.
(Ⅰ)求直線AB的方程和橢圓C2的方程;
(Ⅱ)如果橢圓C2的左右焦點分別是F1、F2,橢圓上是否存在點P,使得
PF1
+
PF2
AB
,如果存在,請求點P的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓C1的方程為(x-2)2+(y-1)2=
20
3
,橢圓C2的方程為
x2
a2
+
y2
b2
=1
(a>b>0),C2的離心率為
2
2
,如果C1與C2相交于A、B兩點,且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1的方程為f(x,y)=0,且P(x0,y0)在圓C1外,圓C2的方程為f(x,y)=f(x0,y0),則C1與圓
C2一定(  )
A、相離B、相切C、同心圓D、相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1的方程為x2+y2+4x-5=0,圓C2的方程為x2+y2-4x+3=0,動圓C與圓C1、C2相外切.
(I)求動圓C圓心軌跡E的方程;
(II)若直線l過點(2,0)且與軌跡E交于P、Q兩點.
①設(shè)點M(m,0),問:是否存在實數(shù)m,使得直線l繞點(2,0)無論怎樣轉(zhuǎn)動,都有
MP
MQ
=0成立?若存在,求出實數(shù)m的值;若不存在,請說明理由;
②過P、Q作直線x=
1
2
的垂線PA、QB,垂足分別為A、B,記λ=
|
PA
|+|
QB
|
|
AB
|
,求λ,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)已知圓C1的方程為x2+(y-2)2=1,定直線l的方程為y=-1.動圓C與圓C1外切,且與直線l相切.
(Ⅰ)求動圓圓心C的軌跡M的方程;
(Ⅱ)斜率為k的直線m與軌跡M相切于第一象限的點P,過點P作直線m的垂線恰好經(jīng)過點A(0,6),并交軌跡M與另一點Q,記S為軌跡M與直線PQ圍成的封閉圖形的面積,求S的值.

查看答案和解析>>

同步練習(xí)冊答案