直線l與函數(shù)f(x)=x3圖象相切,且l與直線x+3y=1垂直,則直線l的方程為
y=3x±2
y=3x±2
分析:設(shè)所求的直線方程為y=3x+m,切點(diǎn)為(n,n3),根據(jù)函數(shù)在切點(diǎn)處的導(dǎo)數(shù)即為切線的斜率,求出n值,可得切點(diǎn)的坐標(biāo),用點(diǎn)斜式求得切線的方程.
解答:解:設(shè)所求的直線方程為y=3x+m,切點(diǎn)為(n,n3),
則由題意可得3n2=3,∴n=±1,
故切點(diǎn)為(1,1),或(-1,-1),代入切線方程 y=3x+m可得m=±2,
故設(shè)所求的直線方程為y=3x±2,
故答案為:y=3x±2.
點(diǎn)評:本題考查兩直線垂直的性質(zhì),兩直線垂直斜率之積等于-1,函數(shù)在某點(diǎn)的導(dǎo)數(shù)的幾何意義,求出切點(diǎn)的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與函數(shù)f(x)=lnx的圖象相切于點(diǎn)(1,0),且l與函數(shù)g(x)=
1
2
x2+mx+
7
2
(m<0)的圖象也相切.
(Ⅰ)求直線l的方程及m的值;
(Ⅱ)若h(x)=f(x+1)-g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;
(Ⅲ)當(dāng)0<a<1時,求證:f(1+a)-f(2)<
a-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=
1
2
x2
+mx+
7
2
(m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實(shí)數(shù)m的值;
(2)若h(x)=f(x+1)-g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時,求證:f(a+b)-f(2a)<
b-a
2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2+t(t
為常數(shù)),直線l與函數(shù)f(x),g(x)的圖象都相切,且l與函數(shù)f(x)圖象的切點(diǎn)的橫坐標(biāo)為1,則t的值為
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2+t
(t為常數(shù)),直線l與函數(shù)f(x),g(x)的圖象都相切,且l與函數(shù)f(x)圖象的切點(diǎn)的橫坐標(biāo)為1,則t的值為
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綏化模擬)已知函數(shù)f(x)=a(x+
1
x
)+2lnx
,g(x)=x2
(1)若a=
1
2
,時,直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于同一點(diǎn),求切線l的方程
(2)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案