【題目】如圖,在四棱錐PABCD中,APAB,AD兩兩垂直,BCAD,且APABAD4BC2.

1)求二面角P-CD-A的余弦值;

2)已知H為線段PC上異于C的點(diǎn),且DCDH,求的值.

【答案】12.

【解析】

1)先根據(jù)題意建立空間直角坐標(biāo)系,分別求得平面PCD的一個(gè)法向量,平面ACD的一個(gè)法向量,再利用面面角的向量方法求解.

2)由題意設(shè)λ(4λ2λ,-4λ),所以(4λ,2λ444λ),又因?yàn)?/span>DCDH,再根據(jù)求解.

1)根據(jù)題意,以為正交基底,建立如圖所示空間直角坐標(biāo)系Axyz.

A(0,0,0),B(40,0),C(4,2,0),D(04,0),P(0,0,4)

所以(0,-44),(4,-2,0)

設(shè)平面PCD的法向量為(x,y,z),

x1,

y2,z2.所以平面PCD的一個(gè)法向量為(1,2,2)

平面ACD的一個(gè)法向量為(0,0,1),

所以cos,〉=,

且由圖可知二面角為銳二面角,

所以二面角P-CD-A的余弦值為

2 由題意可知(4,2,-4)(4,-20),

設(shè)λ(4λ,2λ,-4λ),

(4λ,2λ4,44λ),

因?yàn)?/span>DCDH,所以,

化簡(jiǎn)得3λ24λ10,

所以λ1λ.

又因?yàn)辄c(diǎn)H異于點(diǎn)C,

所以λ,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓弧(簡(jiǎn)稱為弧田的。┖鸵詧A弧的端點(diǎn)為端點(diǎn)的線段(簡(jiǎn)稱 (弧田的弦)圍成的平面圖形,公式中指的是弧田的弦長(zhǎng),等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長(zhǎng)等于,其弧所在圓為圓,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列關(guān)于函數(shù)的說法,不正確的是(

A.的圖象關(guān)于對(duì)稱

B.上有2個(gè)零點(diǎn)

C.在區(qū)間上單調(diào)遞減

D.函數(shù)圖象向右平移個(gè)單位,所得圖像對(duì)應(yīng)的函數(shù)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD1,PAAB ,點(diǎn)E是棱PB的中點(diǎn).

1)求異面直線ECPD所成角的余弦值;

2)求二面角B-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBC,OAB中點(diǎn),且DC⊥平面ABC,DCBE.已知ACBCDCBE2.

1)求直線ADCE所成角;

2)求二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和圓,拋物線的焦點(diǎn)為.

1)求的圓心到的準(zhǔn)線的距離;

2)若點(diǎn)在拋物線上,且滿足 過點(diǎn)作圓的兩條切線,記切點(diǎn)為,求四邊形的面積的取值范圍;

3)如圖,若直線與拋物線和圓依次交于四點(diǎn),證明:的充要條件是直線的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于、兩點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將方格紙中每個(gè)小方格染三種顏色之一,使得每種顏色的小方格的個(gè)數(shù)相等.若相鄰兩個(gè)小方格的顏色不同,稱他們的公共邊為“分割邊”,則分割邊條數(shù)的最小值為( )

A.33B.56C.64D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,的導(dǎo)函數(shù).

1)若,求處的切線方程;

2)若可上單調(diào)遞增,求的取值范圍;

3)求證:當(dāng)時(shí)在區(qū)間內(nèi)存在唯一極大值點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案