6.函數(shù)f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(x)=12,則x=-2或2.

分析 ∴當(dāng)x≥0時(shí),x(x+4)=12;當(dāng)x<0時(shí),x(x-4)=12.由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,f(x)=12,
∴當(dāng)x≥0時(shí),x(x+4)=12,解得x=2或x=-6(舍);
當(dāng)x<0時(shí),x(x-4)=12,解得x=-2或x=6(舍).
∴x=2或x=-2.
故答案為:-2或2.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在斜△ABC中,角A,B,C所對(duì)的邊長分別為a,b,c,A=$\frac{π}{4}$,sinA+sin(B-C)=2$\sqrt{2}$sin2C,且△ABC的面積為1,則a的值為( 。
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1,則它的漸近線方程和離心率分別是( 。
A.y=±$\frac{4}{3}$x,e=$\frac{5}{3}$B.y=±$\frac{4}{3}$x,e=$\frac{5}{4}$C.y=±$\frac{3}{4}$x,e=$\frac{5}{3}$D.y=±$\frac{3}{4}$x,e=$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算下列各式的值:
(I)0.064${\;}^{{-_{\;}}\frac{1}{3}}}$-(-$\frac{4}{5}}$)0+0.01${\;}^{\frac{1}{2}}}$;
(II)2lg5+lg4+ln$\sqrt{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=($\frac{3}{π}$)${\;}^{{x^2}+2x-3}}$的遞減區(qū)間為  ( 。
A.(1,+∞)B.(-∞,1)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)=a+$\frac{1}{{{4^x}+1}}$為定義在R上的奇函數(shù).
(1)求a的值;       
(2)判斷函數(shù)f(x)在(-∞,+∞)的單調(diào)性并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式$\frac{4}{x-1}$<x-1的解集是(-1,1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某研究所計(jì)劃利用宇宙飛船進(jìn)行新產(chǎn)品搭載試驗(yàn),計(jì)劃搭載若干件新產(chǎn)品A,B,該研究所要根據(jù)產(chǎn)品的研制成本、產(chǎn)品重量、搭載試驗(yàn)費(fèi)用和預(yù)計(jì)收益來決定具體安排,通過調(diào)查得到的有關(guān)數(shù)據(jù)如表:
每件A產(chǎn)品每件B產(chǎn)品
研制成本、搭載試驗(yàn)費(fèi)用之和(萬元)2030
產(chǎn)品重量(千克)105
預(yù)計(jì)收益(萬元)8060
已知研制成本、搭載試驗(yàn)費(fèi)用之和的最大資金為300萬元,最大搭載重量為110千克,則如何安排這兩種產(chǎn)品進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,求最大預(yù)計(jì)收益是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和為Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3,n∈N*)
(Ⅰ)試求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項(xiàng)和.證明:對(duì)任意給定的m∈(0,$\frac{1}{6}$),均存在n0∈N*,使得當(dāng)n≥n0時(shí),Tn>m恒成立.

查看答案和解析>>

同步練習(xí)冊答案