設(shè)P為橢圓
x2
4
+
y2
3
=1上一動(dòng)點(diǎn),EF為圓N:(x-1)2+y2=1的任意一條直徑,則
PE
PF
的最大值是
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先把
PE
PF
轉(zhuǎn)化為-|NE|•|NF|•cosπ-0+|NP|2=-1+|NP|2.再結(jié)合|NP|的范圍即可求出結(jié)論.
解答: 解:由題意,
PE
PF
=(
NE
-
NP
)•(
NF
-
NP
)=-|NE|•|NF|•cosπ-0+|NP|2
=-1+|NP|2
∵N為橢圓的右焦點(diǎn)
∴|NP|∈[a-c,a+c]=[1,3]
PE
PF
∈[0,8].
PE
PF
的最大值是8.
故答案為:8.
點(diǎn)評(píng):本題主要考查橢圓的基本性質(zhì).解決本題的關(guān)鍵在于知道N為橢圓的右焦點(diǎn)并且會(huì)把所求問題轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a8=0,則有a1+a2+a3+…+an=a1+a2+a3+…+a15-n成立.類比此性質(zhì),在等比數(shù)列{bn}中,若b10=1,則存在式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時(shí),
1
x
∈A.則稱集合A是“好集”.
(1)集合B={-1,0,1}是好集;
(2)有理數(shù)集Q是“好集”;
(3)設(shè)集合A是“好集”,若x,y∈A,則x+y∈A:
(4)設(shè)集合A是“好集”,若x,y∈A,則必有xy∈A;
(5)對(duì)任意的一個(gè)“好集A,若x,y∈A,且x≠0,則必有
y
x
∈A.
則上述命題正確的有
 
.(填序號(hào),多項(xiàng)選擇)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(2,3),
b
=(-4,1),則
a
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(1+x)=f(1-x),當(dāng)x∈[0,1]時(shí),f(x)=2x,若在區(qū)間[-2,3]上方程ax+2a-f(x)=0恰有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線x2-
y2
2
=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則P=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

飛機(jī)沿水平方向飛行,在A處測(cè)得正前下方地面目標(biāo)C的俯角為30°,向前飛行10000米,到達(dá)B處,此時(shí)測(cè)得正前下方地面目標(biāo)C的俯角為60°,這時(shí)飛機(jī)與地面目標(biāo)的水平距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈N,x3≥x”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y=x2},N={y|y=x},則M∩N=(  )
A、(0,+∞)
B、[0,+∞)
C、[0,1]
D、(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案