已知上的減函數(shù),則滿足的實(shí)數(shù)的取值范圍是(   )
A.B.(0,1)C.D.
C  

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002341532492.png" style="vertical-align:middle;" />為上的減函數(shù),所以由得,
,解得實(shí)數(shù)的取值范圍是,故選C。
點(diǎn)評(píng):小綜合題,利用函數(shù)單調(diào)性,得到x的不等式求解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
若函數(shù)對(duì)任意的實(shí)數(shù),,均有,則稱函數(shù)是區(qū)間上的“平緩函數(shù)”.  
(1) 判斷是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說明理由;
(2) 若數(shù)列對(duì)所有的正整數(shù)都有 ,設(shè),
求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知對(duì)于任意,都有,且,則是(  )
A.奇函數(shù)B.偶函數(shù)
C.奇函數(shù)且偶函數(shù)D.非奇且非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像與軸有兩個(gè)交點(diǎn)
(1)設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為試判斷函數(shù)有沒有最大值或最小值,并說明理由.
(2)若在區(qū)間上都是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(11分)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為組成數(shù)對(duì)(,并構(gòu)成函數(shù)
(Ⅰ)寫出所有可能的數(shù)對(duì)(,并計(jì)算,且的概率;
(Ⅱ)求函數(shù)在區(qū)間[上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)在區(qū)間的導(dǎo)函數(shù)為在區(qū)間的導(dǎo)函數(shù)為若在區(qū)間恒成立,則稱函數(shù)在區(qū)間上為“凸函數(shù)”,已知,若對(duì)任意的實(shí)數(shù)m滿足時(shí),函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為(   )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),且,。
(1)求函數(shù)的解析式;    (2)求函數(shù)上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四組函數(shù)中,表示相同函數(shù)的一組是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在區(qū)間上是增函數(shù),實(shí)數(shù)a組成幾何A,設(shè)關(guān)于x的方程的兩個(gè)非零實(shí)根,實(shí)數(shù)m使得不等式使得對(duì)任意恒成立,則m的解集是(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案