【題目】已知圓的圓心在軸上,半徑為1,直線被圓所截的弦長為,且圓心在直線的下方.
(1)求圓的方程;
(2)設(shè),若圓是的內(nèi)切圓,求的面積的最大值和最小值.
【答案】(1)(2)最大值為,最小值.
【解析】試題分析:(1)由于圓的半徑為,設(shè)圓心為,利用弦長為,則圓心到直線的距離為,以此建立方程,求得,所以圓的方程為;(2)設(shè)的斜率為的斜率為,由此寫出直線的方程,聯(lián)立求得點(diǎn)的橫坐標(biāo), ,面積的表達(dá)式,利用圓與直線相切,求得,同理求得,代入面積的表達(dá)式,利用二次函數(shù)的圖像與性質(zhì),求得最小值與最大值.
試題解析:
(1)設(shè)圓心,由已知得到的距離為,
∴,又∵在的下方,∴,∴.
故圓的方程為.
(2)由題設(shè)的斜率為的斜率為,則直線的方程為,直線的方程為.
由方程組,得點(diǎn)的橫坐標(biāo)為.
∵,
∴,
由于圓與相切,所以,∴;
同理, ,∴,
∴,∵,
∴,∴,
∴,
∴的面積的最大值為,最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)F做x軸的垂線交橢圓于A,B兩點(diǎn),且.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若M,N為橢圓上異于點(diǎn)A的兩點(diǎn),且直線的傾斜角互補(bǔ),問直線MN的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 【2016高考新課標(biāo)Ⅲ文數(shù)】已知拋物線:的焦點(diǎn)為,平行于軸的兩條直線分別交于兩點(diǎn),交的準(zhǔn)線于兩點(diǎn).
(I)若在線段上,是的中點(diǎn),證明;
(II)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考四川文科】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時,定義P的“伴隨點(diǎn)”為;當(dāng)P是原點(diǎn)時,定義P的“伴隨點(diǎn)”為它自身,現(xiàn)有下列命題:
若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn)A.
單元圓上的“伴隨點(diǎn)”還在單位圓上.
若兩點(diǎn)關(guān)于x軸對稱,則他們的“伴隨點(diǎn)”關(guān)于y軸對稱
④若三點(diǎn)在同一條直線上,則他們的“伴隨點(diǎn)”一定共線.
其中的真命題是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考天津文數(shù)】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸,在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用x,y計(jì)劃表示生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓和直線.
(Ⅰ)求的參數(shù)方程以及圓上距離直線最遠(yuǎn)的點(diǎn)坐標(biāo);
(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,將圓上除點(diǎn)以外所有點(diǎn)繞著逆時針旋轉(zhuǎn)得到曲線,求曲線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店會員活動日.
(Ⅰ)隨機(jī)抽取50名會員對商場進(jìn)行綜合評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100].
(1)求頻率分布直方圖中的值;
(2)估計(jì)會員對商場的評分不低于80的概率.
(Ⅱ)采取摸球兌獎的方式對會員進(jìn)行返代金券活動,每位會員從一個裝有5個標(biāo)有面值的球(2個所標(biāo)的面值為300元,其余3個均為100元)的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該會員所獲的代金券金額.求某會員所獲得獎勵超過400元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中, ,且的等比中項(xiàng)為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對任意恒成立?若存在,求出正整數(shù)的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1.
(1)求f(x)的最小正周期;
(2)若函數(shù)f(x)的定義域?yàn)? ,求單調(diào)遞減區(qū)間和值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com