【題目】最新公布的《道路交通安全法》和《道路交通安全法實(shí)施條例》對車速、安全車距以及影響駕駛?cè)朔磻?yīng)快慢等因素均有詳細(xì)規(guī)定,這些規(guī)定說到底主要與剎車距離有關(guān),剎車距離是指從駕駛員發(fā)現(xiàn)障礙到制動車輛,最后完全停止所行駛的距離,即:剎車距離=反應(yīng)距離+制動距離,反應(yīng)距離=反應(yīng)時(shí)間×速率,制動距離與速率的平方成正比,某反應(yīng)時(shí)間為的駕駛員以的速率行駛,遇緊急情況,汽車的剎車距離為.
()試將剎車距離表示為速率的函數(shù).
()若該駕駛員駕駛汽車在限速為的公路上行駛,遇緊急情況,汽車的剎車距離為,試問該車是否超速?請說明理由.
【答案】();()超速.
【解析】試題分析:()設(shè)制動距離,由題代入數(shù)值可解得.進(jìn)而可得剎車距離關(guān)于速率的函數(shù)為.()當(dāng)時(shí),有,
當(dāng)x=40時(shí), , ,故正根,所以該車已超速.
試題解析:()設(shè)制動距離,
當(dāng)反應(yīng)時(shí)間為, 時(shí), ,
得.故關(guān)于的函數(shù)為.
()當(dāng)時(shí),
,
即,
設(shè)正根為,負(fù)根舍去,
∵,
∴,故,所以該車已超速.
點(diǎn)晴:本題考查的是函數(shù)模型的應(yīng)用。解決函數(shù)模型應(yīng)用的解答題,要注意以下幾點(diǎn):①讀懂實(shí)際背景,將實(shí)際問題轉(zhuǎn)化為函數(shù)模型.②對涉及的相關(guān)公式,記憶要準(zhǔn)確.③在求解的過程中計(jì)算要正確.另外需要熟練掌握求解方程、不等式、函數(shù)最值的方法,才能快速正確地求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為非零實(shí)數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若y=f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證: < .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=1+mi(i是虛數(shù)單位,m∈R),且 為純虛數(shù)( 是z的共軛復(fù)數(shù)).
(1)設(shè)復(fù)數(shù) ,求|z1|;
(2)設(shè)復(fù)數(shù) ,且復(fù)數(shù)z2所對應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點(diǎn)( ,1),且以橢圓短軸的兩個(gè)端點(diǎn)和一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M(x,y)是橢圓C上的動點(diǎn),P(p,0)是x軸上的定點(diǎn),求|MP|的最小值及取最小值時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對稱軸;③( ,0)為fn(x)(n∈N*)的對稱中心:④|fn(x)|≤n(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x-1|+|2x-1|.
(Ⅰ)若對 x>0,不等式f(x)≥tx恒成立,求實(shí)數(shù)t的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實(shí)數(shù)a,b滿足a2+b2=2M.證明:a+b≥2ab.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點(diǎn),且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD為直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F(xiàn)分別是PB,BC的中點(diǎn).
求證:
(1)PC∥平面DEF;
(2)平面PBC⊥平面PBD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com