精英家教網 > 高中數學 > 題目詳情
如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(圓心為O)與此公路一邊所在直線l相切于點A.點P為北半圓弧(弧APB)上的一點,過P作直線l的垂線,垂足為Q.計劃在△PAQ內(圖中陰影部分)進行綠化.設△PAQ的面積為S(單位:m2).
(1)設∠BOP=α(rad),將S表示為α的函數;
(2)確定點P的位置,使綠化面積最大,并求出最大面積.

【答案】分析:(1)若∠BOP=α,則P點坐標(x,y)中,x=AQ=100sinα,y=PQ=100+100cosα,α∈(0,π),根據三角形面積公式,我們易將S表示為α的函數.
(2)由(1)中結論,我們可利用導數法,判斷函數的單調性,進而求出函數的最大值,即最大綠化面積.
解答:解:(1)AQ=100sinα,PQ=100+100cosα,α∈(0,π),
則△PAQ的面積
=5000(sinα+sinαcosα),(0<α<π).
(2)S/=5000(cosα+cos2α-sin2α)
=5000(2cos2α+cosα-1)
=5000(2cosα-1)(cosα+1),
,cosα=-1(舍去),此時
關于α為增函數;
關于α為減函數.
∴當時,(m2),此時PQ=150m.
答:當點P距公路邊界l為150m時,綠化面積最大,
點評:本題考查的知識點是在實際問題中建立三角函數的模型,及利用導數計算,閉區(qū)間上函數的最值.在構造函數時,一定要根據P為北半圓。ɑPB)上的一點,限制0<α<π,這是本題中易忽略的點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(圓心為O)與此公路一邊所在直線l相切于點A.點P為北半圓。ɑPB)上的一點,過P作直線l的垂線,垂足為Q.計劃在△PAQ內(圖中陰影部分)進行綠化.設△PAQ的面積為S(單位:m2).
(1)設∠BOP=α(rad),將S表示為α的函數;
(2)確定點P的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,a是海面上一條南北方向的海防警戒線,在a上一點A處有一個水聲監(jiān)測點,另兩個監(jiān)測點B,C分別在A的正東方20km和54km處.某時刻,監(jiān)測點B收到發(fā)自靜止目標P的一個聲波,8s后監(jiān)測點A,20s后監(jiān)測點C相繼收到這一信號.在當時的氣象條件下,聲波在水中的傳播速度是1.5km/s.
(1)設A到P的距離為x km,用x表示B,C到P的距離,并求x的值;
(2)求靜止目標P到海防警戒線a的距離(結果精確到0.01km).

查看答案和解析>>

科目:高中數學 來源:教材完全解讀 高中數學 必修5(人教B版課標版) 人教B版課標版 題型:038

如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進,以后又改成正東方向航行,但不知最初的方向和何時改變方向.現要去營救,請用圖表示營救的區(qū)域.

查看答案和解析>>

科目:高中數學 來源:2010年江蘇省宿遷中學高考數學模擬試卷(解析版) 題型:解答題

如圖,在南北方向有一條公路,一半徑為100m的圓形廣場(圓心為O)與此公路一邊所在直線l相切于點A.點P為北半圓。ɑPB)上的一點,過P作直線l的垂線,垂足為Q.計劃在△PAQ內(圖中陰影部分)進行綠化.設△PAQ的面積為S(單位:m2).
(1)設∠BOP=α(rad),將S表示為α的函數;
(2)確定點P的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

同步練習冊答案