已知函數(shù).
(1)若在處取得極值,求實數(shù)的值;
(2)求函數(shù)在區(qū)間上的最大值.
(1);(2)詳見解析.
解析試題分析:(1)利用函數(shù)在處取得極值,得到求出的值,并對此時函數(shù)能否在處取得極值進行檢驗,從而確定的值;(2)先求出導(dǎo)數(shù),由條件得到的取值范圍,從而得到導(dǎo)數(shù)的符號與相同,從而對是否在區(qū)間內(nèi)進行分類討論,并確定函數(shù)在區(qū)間上的單調(diào)性,從而確定函數(shù)在區(qū)間上的最大值.
試題解析:(1)因為,
所以函數(shù)的定義域為,且,
因為在處取得極值,所以.
解得.
當(dāng)時,,
當(dāng)時,;當(dāng)時,;當(dāng)時,,
所以是函數(shù)的極小值點,故;
(2)因為,所以,
由(1)知,
因為,所以,
當(dāng)時,;當(dāng)時,.
所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞減.
①當(dāng)時,在上單調(diào)遞增,
所以.
②當(dāng)即時,在上單調(diào)遞增,在上單調(diào)遞減,
所以;
③當(dāng),即時,在上單調(diào)遞減,
所以.
綜上所述:
當(dāng)時,函數(shù)在上的最大值是
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)求函數(shù)的零點;
(2)若對任意均有兩個極值點,一個在區(qū)間內(nèi),另一個在區(qū)間外,
求的取值范圍;
(3)已知且函數(shù)在上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中且.
(Ⅰ) 當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時,函數(shù)有極值,求函數(shù)圖象的對稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)若曲線在與處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;
(Ⅲ)設(shè)函數(shù)的圖像C1與函數(shù)的圖像C2交于P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義函數(shù)為的階函數(shù).
(1)求一階函數(shù)的單調(diào)區(qū)間;
(2)討論方程的解的個數(shù);
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中實數(shù)a為常數(shù).
(I)當(dāng)a=-l時,確定的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間(e為自然對數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象在上連續(xù),定義:,.其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”.
(Ⅰ)若,試寫出,的表達(dá)式;
(Ⅱ)已知函數(shù),試判斷是否為上的“階收縮函數(shù)”.如果是,求出對應(yīng)的;如果不是,請說明理由;
(Ⅲ)已知,函數(shù)是上的2階收縮函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調(diào)遞減區(qū)間;
(II)若在上恒成立,求實數(shù)的取值范圍;
(III)過點作函數(shù)圖像的切線,求切線方程
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com