點(diǎn)P是雙曲線
x2
4
-y2
=1的右支上一點(diǎn),M、N分別是圓(x+
5
)2+y2
=1和圓(x-
5
)2+y2
=1上的點(diǎn),則|PM|-|PN|的最大值是
2+2
5
2+2
5
分析:先求出雙曲線的兩個(gè)焦點(diǎn),則這兩點(diǎn)正好是兩圓的圓心,當(dāng)且僅當(dāng)點(diǎn)P與M、F1三點(diǎn)共線以及P與N、F2三點(diǎn)共線時(shí)所求的值最大,利用雙曲線的定義分別求得|PM|和|PN|,進(jìn)而可求得此時(shí)|PM|-|PN|的值.
解答:解:雙曲線
x2
4
-y2
中,如圖:
∵a=2,b=1,c=
a2+b2
=
5
,
∴F1(-
5
,0),F(xiàn)2
5
,0),
∴|MP|≤|PF1|+|MF1|,…①
∵|PN|≥|PF2|-|NF2|,
可得-|PN|≤-|PF2|+|NF2|,…②
∴①②相加,得
|PM|-|PN|≤|PF1|+|MF1|-|PF2|+|NF2|
=(|PF1|-|PF2|)+|MF1|+|NF2|
∵|PF1|-|PF2|=2a=2
5
,|MF1|=|NF2|=1
∴|PM|-|PN|≤2
5
+1+1=2+2
5

故答案為:2+2
5
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)和雙曲線與圓的關(guān)系,屬于中檔題.著重考查了學(xué)生對(duì)雙曲線定義的理解和應(yīng)用,以及對(duì)幾何圖形的認(rèn)識(shí)能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是雙曲線
x2
4
-
y2
12
=1
上的一點(diǎn),F(xiàn)1、F2分別是雙曲線的左、右兩焦點(diǎn),∠F1PF2=90°,則|PF1|•|PF2|等于(  )
A、48B、32C、16D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是雙曲線
x2
4
-y2=1
右支上的點(diǎn),直線l交雙曲線的兩條漸近線于A,B兩點(diǎn),且P為線段AB的中點(diǎn)
(1)若P(2
2
,1)
,求直線l的方程;
(2)若直線l的斜率為2,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線
x2
4
-
y2
5
=1
右支上一點(diǎn),F(xiàn)是該雙曲線的右焦點(diǎn),點(diǎn)M為線段PF的中點(diǎn),若|OM|=3,則點(diǎn)P到該雙曲線右準(zhǔn)線的距離為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線
x2
4
-
y2
3
=1
上一點(diǎn),F(xiàn)1、F2是此雙曲線的焦點(diǎn),若∠F1PF2=60°,則△F1PF2的面積為
3
3
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案