若關(guān)于x的方程kx2有四個不同的實(shí)數(shù)根則實(shí)數(shù)k的取值范圍是________

 

k<4

【解析】顯然,x0是方程的一個實(shí)數(shù)根.當(dāng)x≠0,方程可化為|x|(x1)設(shè)f(x),g(x)|x|(x1)題意即為f(x)g(x)圖象有三個不同的交點(diǎn),g(x)結(jié)合圖象知,<<0,所以k<4.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)ax2|x|2a1(a為實(shí)常數(shù))

(1)a1,作函數(shù)f(x)的圖象;

(2)設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a)g(a)的表達(dá)式;

(3)設(shè)h(x),若函數(shù)h(x)在區(qū)間[1,2]上是增函數(shù)求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第12課時練習(xí)卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)(x2axb)ex(x∈R)

(1)a2b=-2,求函數(shù)f(x)的極大值;

(2)x1是函數(shù)f(x)的一個極值點(diǎn).

試用a表示b;

設(shè)a0函數(shù)g(x)(a214)ex4.1ξ2[0,4],使得|f(ξ1)g(ξ2)|1成立,a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第11課時練習(xí)卷(解析版) 題型:解答題

求拋物線yx2上點(diǎn)到直線xy20最短距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第11課時練習(xí)卷(解析版) 題型:填空題

曲線yxcosxx處的切線方程________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第10課時練習(xí)卷(解析版) 題型:填空題

函數(shù)f 2x 1的零點(diǎn)個數(shù)是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第10課時練習(xí)卷(解析版) 題型:解答題

(1)求函數(shù)f(x)x32x2x2的零點(diǎn);

(2)已知函數(shù)f(x)ln(x1),試求函數(shù)的零點(diǎn)個數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第三章第9課時練習(xí)卷(解析版) 題型:解答題

△ABC,A,BC的對邊分別為a,b,c,Ca5,△ABC的面積為10.

(1)bc的值;

(2)cos的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第三章第7課時練習(xí)卷(解析版) 題型:解答題

△ABCa、b、c分別表示三個內(nèi)角∠A、∠B、∠C的對邊,如果(a2b2)sin(AB)(a2b2)sin(AB)判斷三角形的形狀.

 

查看答案和解析>>

同步練習(xí)冊答案