【題目】已知f(x)=x5+ax3+bx+1且f(﹣2)=10,那么f(2)=

【答案】﹣8
【解析】解:f(x)=x5+ax3+bx+1且f(﹣2)=10,
可得﹣(25+8a+2b)+1=10,
f(2)=25+8a+2b+1=﹣9+1=﹣8.
所以答案是:﹣8.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若全集U={1,2,3,4,5,6},M={1,4,5},N={2,3},則集合(UN)∩M=(  )
A.{2,3}
B.{2,3,5}
C.{1,4}
D.{1,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程2x+x﹣2=0的解所在的區(qū)間為(
A.(﹣1,0)
B.(0,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)與g(x)分別由如表給出,那么g(f(2))=

x

1

2

3

4

f(x)

2

3

4

1

x

1

2

3

4

g(x)

2

1

4

3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的A,B,C,D四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下: 甲說:“是C或D作品獲得一等獎”;
乙說:“B作品獲得一等獎”;
丙說:“A,D兩項(xiàng)作品未獲得一等獎”;
丁說:“是C作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=5x+b的圖象經(jīng)過第一、三、四象限,則實(shí)數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】面對環(huán)境污染黨和政府高度重視,各級環(huán)保部門制定了嚴(yán)格措施治理污染,同時宣傳部門加大保護(hù)環(huán)境的宣傳力度,因此綠色低碳出行越來越成為市民的共識,為此某市在八里湖新區(qū)建立了公共自行車服務(wù)系統(tǒng),市民憑本人二代身份證到公共自行車服務(wù)中心辦理誠信借車卡,初次辦卡時卡內(nèi)預(yù)先贈送20分,當(dāng)誠信積分為0時,借車卡自動鎖定,限制借車,用戶應(yīng)持卡到公共自行車服務(wù)中心以1元購1個積分的形式再次激活該卡,為了鼓勵市民租用公共自行車出行,同時督促市民盡快還車,方便更多的市民使用,公共自行車按每車每次的租用時間進(jìn)行扣分繳費(fèi),具體扣分標(biāo)準(zhǔn)如下:
①租用時間不超過1小時,免費(fèi);
②租用時間為1小時以上且不超過2小時,扣1分;
③租用時間為2小時以上且不超過3小時,扣2分;
④租用時間為3小時以上且不超過4小時,扣3分;
⑤租車時間超過4小時除扣3分外,超出時間按每小時扣2分收費(fèi)(不足1小時的部分按1小時計(jì)算)
甲、乙兩人獨(dú)立出行,各租用公共自行車一次,且兩人租車時間都不會超過4小時,設(shè)甲、乙租用時間不超過一小時的概率分別是0.4,0.5;租用時間為1小時以上且不超過2小時的概率分別是0.3,0.3;租用時間為2小時以上且不超過3小時的概率分別是0.2,0.1.
(1)求甲、乙兩人所扣積分相同的概率;
(2)設(shè)甲、乙兩人所扣積分之和為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講
設(shè)a,b為互不相等的正實(shí)數(shù),求證:4(a3+b3)>(a+b)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p,q都是假命題,則下列命題為真命題的是(
A.p∨q
B.p∧q
C.(¬p)∧q
D.p∨(¬q)

查看答案和解析>>

同步練習(xí)冊答案