3.給出下列命題:
①a>b⇒ac2>bc2; 
②a>|b|⇒a2>b2;
③|a|>b⇒a2>b2;   
④a>b⇒a3>b3
其中正確的命題是( 。
A.①②B.②③C.③④D.②④

分析 根據(jù)不等式的基本性質(zhì),逐一分析給定四個(gè)不等關(guān)系的正誤,可得答案.

解答 解:①a>b⇒ac2>bc2在c=0時(shí)不成立,故①錯(cuò)誤;
②a>|b|⇒|a|>|b|⇒a2>b2,故②正確;
③a=-2,b=1時(shí),|a|>b成立,但a2>b2不成立,故③錯(cuò)誤;
④y=x3在R上為增函數(shù),故a>b⇒a3>b3,故④正確;
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了不等式的基本性質(zhì),難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin x+cos x.
(1)若f(x)=2f(-x),求$\frac{co{s}^{2}x-sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函數(shù)F(x)=f(x)f(-x)+f 2(x),x∈(0,$\frac{π}{2}$)的值域和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\frac{1}{\sqrt{x-2}}$+lg(5-x)的定義域?yàn)椋?,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.曲線y=$\frac{1}{3}$x3-2在點(diǎn)(1,-$\frac{5}{3}$)處切線的斜率是( 。
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥AC,AB=AC=AA1,D為BC的中點(diǎn).
(1)證明:A1B⊥平面AB1C;
(2)求直線A1D與平面AB1C所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是(  )
A.$y={2^x}+\frac{1}{2^x}$B.$y=sinx+\frac{1}{x}$C.y=x2+cosxD.$y=x+\frac{1}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=sin(x+\frac{π}{6})+sin(x-\frac{π}{6})+cosx+a$的最小值為1.
(1)求常數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex+$\frac{{x}^{2}}{2}$+ln(x+m)+n在點(diǎn)(0,f(0))處的切線方程為(e+1)x-ey+3e=0.
(1)求f(x)的解析式;
(2)若當(dāng)x≥0時(shí),f(x)≥$\frac{{x}^{2}}{2}$+ax+3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線C的焦點(diǎn)、實(shí)軸端點(diǎn)恰好分別是橢圓$\frac{x^2}{16}+\frac{y^2}{7}=1$的長軸端點(diǎn)、焦點(diǎn),則雙曲線C的漸近線方程是$y=±\frac{{\sqrt{7}}}{3}x$.

查看答案和解析>>

同步練習(xí)冊(cè)答案