【題目】設(shè)函數(shù)f(x)= ,a為常數(shù),且a∈(0,1).
(1)若x0滿足f(x0)=x0 , 則稱(chēng)x0為f(x)的一階周期點(diǎn),證明函數(shù)f(x)有且只有兩個(gè)一階周期點(diǎn);
(2)若x0滿足f(f(x0))=x0 , 且f(x0)≠x0 , 則稱(chēng)x0為f(x)的二階周期點(diǎn),當(dāng)a= 時(shí),求函數(shù)f(x)的二階周期點(diǎn).

【答案】
(1)證明:由題可得,當(dāng)0≤x≤a時(shí), ,因?yàn)閍∈(0,1),所以x=0;

當(dāng)a<x≤1時(shí), ,因?yàn)閍∈(0,1),所以x= ,

所以函數(shù)f(x)有且只有兩個(gè)一階周期點(diǎn)


(2)解:當(dāng) 時(shí),

所以

當(dāng) 時(shí),由4x=x,解得x=0,

因?yàn)閒(0)=0,故x=0不是f(x)的二階周期點(diǎn);

當(dāng) 時(shí),由2﹣4x=x,解得

因?yàn)? ,故 是f(x)的二階周期點(diǎn);

當(dāng) 時(shí),由4x﹣2=x,解得 ,

因?yàn)? ,故 不是f(x)的二階周期點(diǎn);

當(dāng) 時(shí),由4﹣4x=x,解得 ,

因?yàn)? ,故 是f(x)的二階周期點(diǎn);

綜上,當(dāng) 時(shí),函數(shù)f(x)的二階周期點(diǎn)為x1= ,x2=


【解析】(1)利用定義通過(guò)當(dāng)0≤x≤a時(shí),當(dāng)a<x≤1時(shí),驗(yàn)證函數(shù)f(x)有且只有兩個(gè)一階周期點(diǎn).(2)當(dāng) 時(shí), ,推出 ,利用函數(shù)的定義域,通過(guò)分段求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一艘海監(jiān)船O上配有雷達(dá),其監(jiān)測(cè)范圍是半徑為25 km的圓形區(qū)域,一艘外籍輪船從位于海監(jiān)船正東40 km的A處出發(fā),徑直駛向位于海監(jiān)船正北30 km的B處島嶼,速度為28 km/h.

問(wèn):這艘外籍輪船能否被海監(jiān)船監(jiān)測(cè)到?若能,持續(xù)時(shí)間多長(zhǎng)?(要求用坐標(biāo)法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某高中隨機(jī)選取5名高一男生,其身高和體重的數(shù)據(jù)如表所示:

身高x(cm)

160

165

170

175

180

體重y(kg)

63

66

70

72

74

根據(jù)如表可得回歸方程 =0.56x+ ,據(jù)此模型可預(yù)報(bào)身高為172cm的高一男生的體重為(
A.70.12kg
B.70.29kg
C.70.55kg
D.71.05kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù)m≠0,n≥2且n∈N,二項(xiàng)式(1+mx)n的展開(kāi)式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,第三項(xiàng)系數(shù)是第二項(xiàng)系數(shù)的9倍.
(1)求m、n的值;
(2)若記(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n , 求a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣2ax+b,當(dāng)x∈[0,3]時(shí),|f(x)|≤1恒成立,則2a+b的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象(
A.向左平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向右平移 個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時(shí),求| + |的取值范圍;
(2)若g(x)=( + ,求當(dāng)k為何值時(shí),g(x)的最小值為﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線y=x2﹣6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x﹣y+a=0交與A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案