【題目】某品牌電視生產(chǎn)廠家有A,B兩種型號的電視機參加了家電下鄉(xiāng)活動,若廠家對A,B兩種型號的電視機的投放金額分別為p,q萬元,農(nóng)民購買電視機獲得的補貼分別為p, ln q萬元,已知A,B兩種型號的電視機的投放總額為10萬元,且A,B兩種型號的電視機的投放金額均不低于1萬元,請你制定一個投放方案,使得在這次活動中農(nóng)民得到的補貼最多,并求出最大值.(精確到0.1,參考數(shù)據(jù):ln 4≈1.4)
科目:高中數(shù)學 來源: 題型:
【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83,則x+y的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命題q:sin x+cos x>m.如果對于任意的x∈R,命題p是真命題且命題q為假命題,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四面體的頂點分別在兩兩垂直的三條射線上,在下列命題中,錯誤的是( )
A. 四面體是正三棱錐 B. 直線與平面相交 C. 異面直線和所成角是 D. 直線與平面所成的角的正弦值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點, 軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設直線與曲線相交于, 兩點,當變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,B= .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),a= ,求f(A)的最大值及此時△ABC的外接圓半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2013·湖北高考)四名同學根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:
①y與x負相關且=2.347x-6.423;
②y與x負相關且=-3.476x+5.648;
③y與x正相關且=5.437x+8.493;
④y與x正相關且=-4.326x-4.578.
其中一定不正確的結論的序號是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限 (單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:
使用年限 (年) | 1 | 2 | 3 | 4 | 5 |
維護費用(萬元) | 6 | 7 | 7.5 | 8 | 9 |
請根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護費用關于的線性回歸方程;
若規(guī)定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(jù)(1)的結論求該批空調使用年限的最大值.
參考公式:最小二乘估計線性回歸方程中系數(shù)計算公式:
, ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com