f′(x)是定義域?yàn)镽的函數(shù)f(x)的導(dǎo)函數(shù),若f′(x)-f(x)<0,若a=e2012f(0)、b=e2011f(1)、c=e1000f(1012),則a,b,c的大小關(guān)系是
a>b>c
a>b>c
分析:設(shè)g(x)=e2012-xf(x),則g′(x)=-e2012-x•f(x)-e2012-x•f′(x)=-e2012-x[f(x)-f′(x)],由f′(x)-f(x)<0,知g(x)=e2012-xf(x)是減函數(shù),由此能比較a=e2012f(0)、b=e2011f(1)、c=e1000f(1012)的大小關(guān)系.
解答:解:設(shè)g(x)=e2012-xf(x),
則g′(x)=-e2012-x•f(x)-e2012-x•f′(x)
=-e2012-x[f(x)-f′(x)],
∵f′(x)-f(x)<0,
∴g′(x)=-e2012-x[f(x)-f′(x)]<0,
∴g(x)=e2012-xf(x)是減函數(shù),
∵a=e2012f(0)、b=e2011f(1)、c=e1000f(1012),
∴a>b>c.
故答案為:a>b>c.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地構(gòu)造函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列幾個(gè)命題:
①若函數(shù)f(x)的定義域?yàn)镽,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),對(duì)于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個(gè)值,當(dāng)x1<x2時(shí),f(x1)>f(x2),則f(x)是減函數(shù);
④設(shè)函數(shù)y=
1-x
+
x+3
的最大值和最小值分別為M和m,則M=
2
m
;
⑤若f(x)是定義域?yàn)镽的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號(hào)是
①④⑤
①④⑤
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),且滿足f(x-2)=-f(x)對(duì)一切x∈R恒成立,當(dāng)x∈[0,1]時(shí),f(x)=x3,給出下列四個(gè)命題.
①f(x)是以4為周期的周期函數(shù);
②f(x)在[1,3]上解析式為f(x)=(2-x)3;
③f(x)圖象的對(duì)稱軸有x=±1;
④函數(shù)f(x)在R上無(wú)最大值.
其中正確命題的序號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)是定義域?yàn)閇a-1,2a]的偶函數(shù),則a=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),且滿足f(x-2)=-f(x)對(duì)一切x∈R恒成立,當(dāng)-1≤x≤1時(shí),f(x)=x3.則下列四個(gè)命題中正確的命題是( 。
①f(x)是以4為周期的周期函數(shù);
②f(x)在[1,3]上的解析式為f(x)=(2-x)3;
③f(x)的圖象的對(duì)稱軸中有x=±1;
④f(x)在(
3
2
,f(
3
2
))
處的切線方程為3x+4y=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域?yàn)镽的奇函數(shù),且在(0,+∞)內(nèi)有1003個(gè)零點(diǎn),則f(x)的零點(diǎn)的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案