【題目】已知橢圓E:,直線(xiàn)l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與E有兩個(gè)交點(diǎn)A,B,線(xiàn)段AB的中點(diǎn)為M.

,點(diǎn)K在橢圓E上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;

證明:直線(xiàn)OM的斜率與l的斜率的乘積為定值;

若l過(guò)點(diǎn),射線(xiàn)OM與橢圓E交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)直線(xiàn)l斜率;若不能,說(shuō)明理由.

【答案】(1) (2)見(jiàn)證明;(3)見(jiàn)解析

【解析】

,橢圓E:,兩個(gè)焦點(diǎn),,設(shè),求出的表達(dá)式,然后求解范圍即可.設(shè)A,B的坐標(biāo)分別為,,利用點(diǎn)差法轉(zhuǎn)化求解即可.直線(xiàn)l過(guò)點(diǎn),直線(xiàn)l不過(guò)原點(diǎn)且與橢圓E有兩個(gè)交點(diǎn)的充要條件是設(shè),設(shè)直線(xiàn),代入橢圓方程,通過(guò)四邊形OAPB為平行四邊形,轉(zhuǎn)化求解即可.

,橢圓E:,兩個(gè)焦點(diǎn),

設(shè),,,

,

的范圍是

設(shè)A,B的坐標(biāo)分別為,,則兩式相減,

,,

,故;

設(shè),設(shè)直線(xiàn),即,

的結(jié)論可知,代入橢圓方程得,

,聯(lián)立得

若四邊形OAPB為平行四邊形,那么M也是OP的中點(diǎn),所以,

,整理得解得,.經(jīng)檢驗(yàn)滿(mǎn)足題意

所以當(dāng)時(shí),四邊形OAPB為平行四邊形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左右焦點(diǎn)分別為,,在橢圓L上的點(diǎn)滿(mǎn)足,且,成等差數(shù)列.

1)求橢圓L的方程;

2)過(guò)點(diǎn)A作兩條傾斜角互補(bǔ)的直線(xiàn),,它們與橢圓L的另一個(gè)交點(diǎn)分別為B,C,試問(wèn)直線(xiàn)BC的斜率是否是定值?若是,求出該斜率;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市移動(dòng)公司為了提高服務(wù)質(zhì)量,決定對(duì)使用A,B兩種套餐的集團(tuán)用戶(hù)進(jìn)行調(diào)查,準(zhǔn)備從本市個(gè)人數(shù)超過(guò)1000人的大集團(tuán)和8個(gè)人數(shù)低于200人的小集團(tuán)中隨機(jī)抽取若干個(gè)集團(tuán)進(jìn)行調(diào)查,若一次抽取2個(gè)集團(tuán),全是小集團(tuán)的概率為

求n的值;

若取出的2個(gè)集團(tuán)是同一類(lèi)集團(tuán),求全為大集團(tuán)的概率;

若一次抽取4個(gè)集團(tuán),假設(shè)取出小集團(tuán)的個(gè)數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面選項(xiàng)中錯(cuò)誤的有(

A.命題,則的否命題為:,則

B.的充分不必要條件

C.命題,使得的否定是,均有

D.命題,則的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿(mǎn)足:

對(duì)于任意,都有成立.

①求數(shù)列的通項(xiàng)公式;

②設(shè)數(shù)列,問(wèn):數(shù)列中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為,點(diǎn)、兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),并且滿(mǎn)足,,動(dòng)點(diǎn)的軌跡為曲線(xiàn).

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)作曲線(xiàn)的任意一條切線(xiàn)(不含軸),直線(xiàn)與切線(xiàn)相交于點(diǎn),直線(xiàn)與切線(xiàn)軸分別相交于點(diǎn)與點(diǎn),試探究的值是否為定值,若為定值請(qǐng)求出該定值;若不為定值請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為8的正方形ABCD中,MBC的中點(diǎn),NAD邊上的一點(diǎn),且DN3NA,若對(duì)于常數(shù)m,在正方形ABCD的邊上恰有6個(gè)不同的點(diǎn)P,使,則實(shí)數(shù)m的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)的方程為,集合,若對(duì)于任意的,都存在,使得成立,則稱(chēng)曲線(xiàn)曲線(xiàn).下列方程所表示的曲線(xiàn)中,曲線(xiàn)的有__________(寫(xiě)出所有曲線(xiàn)的序號(hào))

;②;③;④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中, 點(diǎn)邊的中點(diǎn),將沿折起,使平面平面,連接得到如圖所示的幾何體.

(1)求證; 平面;

(2)若二面角的平面角的正切值為求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案