【題目】已知函數(shù),,

1)求的解析式;

2)關于的不等式的解集為一切實數(shù),求實數(shù)的取值范圍;

3)關于的不等式的解集中的正整數(shù)解恰有個,求實數(shù)的取值范圍.

【答案】1 2; 3.

【解析】

1)根據(jù)函數(shù)的解析式進行化簡,即可求解;

2)由(1)化簡,并分離參數(shù),利用換元法,構造法求出函數(shù)的最值,即可求解;

3)由(1)化簡,結合條件將不等式化為,利用函數(shù)的性質,列出不等式,即可求解.

1)由題意,函數(shù),,則,

所以函數(shù)的解析式;

2)由(1)和,可得,

的解集為,

,則,即,

又由函數(shù)為單調遞增函數(shù),

所以當時,函數(shù)的最小值為,則,

即實數(shù)的取值范圍是.

3)由(1)和,可得,

因為不等式的解集中正整數(shù)解恰好由3個,

所以當時,有,

,則該不等式在上恒成立,與題設矛盾.

,所以,

設不等式的解集為,

又由函數(shù)的性質和條件,

可得,所以,

解得,即實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市堅持農業(yè)與旅游融合發(fā)展,著力做好旅游各要素,完善旅游業(yè)態(tài),提升旅游接待能力.為了給游客提供更好的服務,旅游部門需要了解游客人數(shù)的變化規(guī)律,收集并整理了月至月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結論正確的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在7,8

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為等腰梯形, , ,四邊形為正方形,平面平面.

(Ⅰ)若點是棱的中點,求證: ∥平面

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,若存在區(qū)間使得

(Ⅰ)上是單調函數(shù);

(Ⅱ)上的值域是,

則稱區(qū)間為函數(shù)倍值區(qū)間

下列函數(shù)中存在倍值區(qū)間的有______________(填上所有你認為正確的序號)

; ;

;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A33個歐洲國家B1,B2B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某房地產公司新建小區(qū)有A、B兩種戶型住宅,其中A戶型住宅每套面積為100平方米,B戶型住宅每套面積為80平方米,該公司準備從兩種戶型住宅中各拿出12套銷售給內部員工,表是這24套住宅每平方米的銷售價格:(單位:萬元平方米):

房號

1

2

3

4

5

6

7

8

9

10

11

12

A戶型

2.6

2.7

2.8

2.8

2.9

3.2

2.9

3.1

3.4

3.3

3.4

3.5

B戶型

3.6

3.7

3.7

3.9

3.8

3.9

4.2

4.1

4.1

4.2

4.3

4.5

1)根據(jù)表格數(shù)據(jù),完成下列莖葉圖,并分別求出A,B兩類戶型住宅每平方米銷售價格的中位數(shù);

A戶型

B戶型

2.

3.

4.

2)該公司決定對上述24套住房通過抽簽方式銷售,購房者根據(jù)自己的需求只能在其中一種戶型中通過抽簽方式隨機獲取房號,每位購房者只有一次抽簽機會,小明是第一位抽簽的員工,經測算其購買能力最多為320萬元,抽簽后所抽得住房價格在其購買能力范圍內則確定購買,否則,將放棄此次購房資格,為了使其購房成功的概率更大,他應該選擇哪一種戶型抽簽?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某環(huán)線地鐵按內、外環(huán)線同時運行,內、外環(huán)線的長均為30千米(忽略內、外環(huán)線長度差異).

(1)當9列列車同時在內環(huán)線上運行時,要使內環(huán)線乘客最長候車時間為10分鐘,求內環(huán)線列車的最小平均速度;

(2)新調整的方案要求內環(huán)線列車平均速度為25千米/小時,外環(huán)線列車平均速度為30千米/小時.現(xiàn)內、外環(huán)線共有18列列車全部投入運行,要使內外環(huán)線乘客的最長候車時間之差不超過1分鐘,向內、外環(huán)線應各投入幾列列車運行?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,過點的直線交拋物線于兩點.

(1)為坐標原點,求證:;

(2)設點在線段上運動,原點關于點的對稱點為,求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)若,當有兩個極值點時,總有,求此時實數(shù)的值.

查看答案和解析>>

同步練習冊答案