15.向量$\overrightarrow{m}$,$\overrightarrow{n}$,分別對(duì)應(yīng)復(fù)數(shù)m,n,且m=$\frac{3}{a+5}$-(10-a2)i,n=$\frac{2}{1-a}$+(2a-5)i,其中a∈R,若m+n可以與任何實(shí)數(shù)比較大小,求$\overrightarrow{m}$與$\overrightarrow{n}$的數(shù)量積.

分析 由已知復(fù)數(shù)可以與任何實(shí)數(shù)比較大小得到復(fù)數(shù)的虛部為0,計(jì)算a,任何理由向量的坐標(biāo)運(yùn)算,計(jì)算數(shù)量積.

解答 解:由m+n可以與任何實(shí)數(shù)比較大小,得到m+n為實(shí)數(shù),由m+n═$\frac{3}{a+5}$+$\frac{2}{1-a}$+[(2a-5)-(10-a2)]i,所以(2a-5)-(10-a2)=0,解得a=3或者-5(舍去),
所以$\overrightarrow{m}$=($\frac{3}{8}$,1),$\overrightarrow{n}$=(-1,1),所以$\overrightarrow{m}$與$\overrightarrow{n}$的數(shù)量積$\overrightarrow{m}•\overrightarrow{n}$=$-\frac{3}{8}+1$=$\frac{5}{8}$;

點(diǎn)評(píng) 本題考查了平面向量與復(fù)數(shù)的對(duì)應(yīng)以及平面向量的數(shù)量積的運(yùn)算;關(guān)鍵是利用復(fù)數(shù)的性質(zhì)正確求出a值,計(jì)算數(shù)量積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(Ⅰ)化C1,C2的方程為普通方程,并寫出C1的極坐標(biāo)方程;
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3=$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$  (t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.給出定義:如果函數(shù)f(x)在區(qū)間[a,b]上可導(dǎo),其導(dǎo)函數(shù)為f'(x),且?x1,x2∈(a,b),當(dāng)x1≠x2時(shí)總滿足:f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(a)-f(b)}{a-b}$,則稱實(shí)數(shù)x1,x2為[a,b]上的“希望數(shù)”,函數(shù)f(x)為[a,b]上的“希望函數(shù)”.如果函數(shù)f(x)=$\frac{1}{3}$x3-x2+k是[0,k]上的“希望函數(shù)”,那么實(shí)數(shù)k的取值范圍是( 。
A.($\frac{3}{2}$,3)B.(2,3)C.($\frac{3}{2}$,2$\sqrt{3}$)D.(2,2$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若$\vec a,\vec b$滿足|$\vec a|=1$,|$\vec b|=2$,且$(\vec a+\vec b)⊥\vec a$,則$\vec a$與$\vec b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-cos2x
(Ⅰ)求f(x)的最小正周期; 
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+$\frac{1}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意的x∈[1,+∞)及t∈[1,2],不等式f(x)≥t2-2mt+2恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知正四棱錐的側(cè)棱與底面成60°角,則此四棱錐的底邊與不相鄰的側(cè)棱所成角的余弦值是$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.集合A={x|x2+2x>0},B={x|x2+2x-3<0},則A∩B=( 。
A.(-3,1)B.(-3,-2)C.RD.(-3,-2)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)樣本容量為8的樣本數(shù)據(jù),它們按一定順序排列可以構(gòu)成一個(gè)公差不為0的等差數(shù)列{an},若a3=5,且a1,a2,a5成等比數(shù)列,則此樣本數(shù)據(jù)的中位數(shù)是(  )
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案