為了參加全運會,省運動管理中心對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:
27 38 30 37 35 31
33 29 38 34 28 36
請用平均數(shù)和方差來分析甲、乙兩人誰參加這項重大比賽更合適.
考點:極差、方差與標準差
專題:概率與統(tǒng)計
分析:先做出甲和乙的速度的平均數(shù),甲和乙的速度的平均數(shù)相同,需要再比較兩組數(shù)據(jù)的方差,選方差較小運動員參加比賽比較好.
解答: 解:
.
x
=
1
6
(27+38+30+37+35+31)=33
S2=
1
6
[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]=
94
6
…( 4分)
.
x
=
1
6
(33+29+38+34+28+36)=33
S2=
1
6
[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]=
76
6
(8分)
.
x
=
.
x
,S2>S2   (10分)
故兩名運動員水平相當,但乙發(fā)揮更穩(wěn)定,
∴乙參加更合適                  (12分)
點評:本題考查兩組數(shù)據(jù)的平均數(shù)和方差,對于兩組數(shù)據(jù),通常要求的是這組數(shù)據(jù)的方差和平均數(shù),用這兩個特征數(shù)來表示分別表示兩組數(shù)據(jù)的特征.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知非零向量
a
,
b
且|
a
|=|
b
|,則a與b的關(guān)系是( 。
A、
a
=
b
B、
a
=-
b
C、
a
b
D、
a
2
=
b
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-sin(2x+π)+
3
sin(2x+
π
2

(1)求f(x)的對稱軸方程;
(2)若將f(x)的圖象向右平移
π
3
個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
)上的最大值和最小值,并求出相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC中,平面ASC⊥平面ABC,O、D分別為AC、AB的中點,AS=CS=CD=AD=
2
2
AC
(1)求證:平面ASC⊥平面BCS
(2)設(shè)AC=2,求三棱錐S-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(2cos2x-1)sin2x+
1
2
cos4x.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若a∈(
π
2
,π),且f(α)=
2
2
,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+x-xlnx(a>0),g(x)=1-
1+alnx
x
(a>0)
(Ⅰ)若函數(shù)滿足f(1)=2,求g(x)的最小值;
(Ⅱ)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)當
1
e
<m<n<1時,試比較
m
n
1+lnm
1+lnn
的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)化簡
1-2sin10°cos10°
cos10°-
1-cos2170°

(2)f(α)=
sin(5π-α)cos(α+
2
)cos(π+α)
sin(α-
2
)cos(α+
π
2
)tan(α-3π)
,求f(-
41π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,a1+a3=10,S4=24.
(1)求數(shù)列{an}的通項公式; 
(2)令Tn=
1
S1
+
1
S2
+…
1
Sn
,求Tn

查看答案和解析>>

同步練習冊答案