(09年濱州一模理)(12分)

已知方向向量為的直線過點和橢圓的右焦點,且橢圓的離心率為

(I)求橢圓的方程;

(II)若已知點,點是橢圓上不重合的兩點,且,求實數(shù)的取值范圍.

解析:(1)∵直線的方向向量為

∴直線的斜率為,又∵直線過點

∴直線的方程為

,∴橢圓的焦點為直線軸的交點

∴橢圓的焦點為

,又∵

 ,∴

∴橢圓方程為  

(2)設(shè)直線MN的方程為

設(shè)坐標分別為

   (1)    (2)        

>0

,

,顯然,且

代入(1) (2),得

,得

,即

解得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(09年濱州一模理)(14分)

已知曲線上一點作一斜率為的直線交曲線于另一點,點列的橫坐標構(gòu)成數(shù)列,其中

(I)求的關(guān)系式;

(II)令,求證:數(shù)列是等比數(shù)列;

(III)若(λ為非零整數(shù),n∈N*),試確定λ的值,使得對任意n∈N*,都有cn+1>cn成立。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年濱州一模理)(12分)

設(shè)函數(shù)

(I)若直線l與函數(shù)的圖象都相切,且與函數(shù)的圖象相切于點

(1,0),求實數(shù)p的值;

(II)若在其定義域內(nèi)為單調(diào)函數(shù),求實數(shù)p的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年濱州一模理)(12分)

如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,平面PBC⊥底面ABCD,且PB=PC=.

(Ⅰ)求證:AB⊥CP;

(Ⅱ)求點到平面的距離;

(Ⅲ)設(shè)面與面的交線為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年濱州一模理)(12分)

已知向量,其中>0,且,又的圖像兩相鄰對稱軸間距為.

(Ⅰ)求的值;

(Ⅱ) 求函數(shù)在[-]上的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習冊答案