以保護環(huán)境,發(fā)展低碳經(jīng)濟為宗旨,某單位在國家科研部門的支持下進行技術(shù)改革,采用新公益,把二氧化碳轉(zhuǎn)化為一種可以利用的化工產(chǎn)品,已知該單位每月處理二氧化碳最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=
1
2
x2-200x-10000,且每月處理一噸二氧化碳該單位可得到價值為100元的可利用的化工產(chǎn)品.
(1)記每月處理x(噸)二氧化碳該單位可以獲得的利潤為S(元),試用S(元)表示成x(噸)的函數(shù),并寫出函數(shù)的定義域;(利潤=可利用的化工產(chǎn)品德爾價值-成本)
(2)吐過丹迪政府對發(fā)展低碳經(jīng)濟的愜意給予專項獎勵,每處理一噸二氧化碳給予160元專項獎勵,那么該單位每月處理多少噸二氧化碳使,才能使本單位在低碳經(jīng)濟的發(fā)展中獲得處理二氧化碳的最大經(jīng)濟效益?
考點:根據(jù)實際問題選擇函數(shù)類型
專題:計算題,應用題,函數(shù)的性質(zhì)及應用
分析:(1)由題意,寫出S=100x-(
1
2
x2-200x-10000)=-
1
2
x2+300x+10000并函數(shù)的定義域為[400,600];
(2)設(shè)該單位在低碳經(jīng)濟的發(fā)展中,獲得處理二氧化碳的最終利潤為L(元),則L=S+160x,配方求最值.
解答: 解:(1)由題意,
S=100x-(
1
2
x2-200x-10000)
=-
1
2
x2+300x+10000,
函數(shù)的定義域為[400,600];
(2)設(shè)該單位在低碳經(jīng)濟的發(fā)展中,獲得處理二氧化碳的最終利潤為L(元),
則L=S+160x
=-
1
2
x2+300x+10000+160x
=-
1
2
x2+460x+10000,
=-
1
2
(x-460)2+205800;
故當x=460∈[400,600]時,L有最大值205800;
故該單位每月處理460噸二氧化碳時,才能使本單位在低碳經(jīng)濟的發(fā)展中獲得處理二氧化碳的最大經(jīng)濟效益205800元.
點評:本題考查了函數(shù)在實際問題中的應用及配方法求最值,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C過點M(0,3),N(1,4),且圓心C在直線x-y+4=0上.
(1)求圓C的方程;
(2)已知點P是拋物線y=x2上一點(異于原點),過點P作圓C的兩條切線,交拋物線于A,B兩點,若過C,P兩點的直線l垂直于AB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12+6
3
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若在拋物線2y=x2上存在兩個不同的點M、N關(guān)于直線y=kx+3對稱,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從正方體的各表面對角線中隨機取兩條,這兩條表面對角線成的角的度數(shù)的數(shù)學期望為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選做題)已知曲線C的極坐標方程為ρ=4cosθ-2sinθ,則點M(-2,-3)與曲線C上的點的最小距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)斜率為
2
2
的直線l與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)交于不同的兩點P、Q,若點P、Q在x軸上的射影恰好為雙曲線的兩個焦點,則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+ax-1.
(I)求證:當a>-1且x>0時,f(x)>0;
(Ⅱ)g(x)=ex+2x2-x+k,若對任意x1,x2,x3∈[-1,1],長分別為g(x1),g(x2),g(x3)的線段
能構(gòu)成三角形,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1,AB=AC=1,AA1=2.AB⊥AC.
D、E分別為AA1、B1C的中點.
(1)求DE的長;
(2)證明:DE⊥平面BCC1;
(3)求二面角D-BC-C1的余弦值.

查看答案和解析>>

同步練習冊答案