(2012•盧灣區(qū)一模)若(1+ax)5=1+10x+bx2+…+a5x5,則b=
40
40
分析:由二項式定理,可得(1+ax)5的展開式的通項,寫出含x的項,結(jié)合題意可得5a=10,即可得a=2,再根據(jù)通項可得b=C52a2,計算可得答案.
解答:解:(1+ax)5的展開式的通項為Tr+1=C5rarxr,
則含x的項為C51ax=5ax,
又由題意,可得5a=10,即a=2,
則b=C52a2=10×4=40;
故答案為40.
點評:本題考查二項式定理的應(yīng)用,關(guān)鍵是求出a的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)不等式x2+x+1<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)函數(shù)y=
12
lnx
(x>0)的反函數(shù)為
y=e2x(x∈R)
y=e2x(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)若集合A={x|0≤x≤5,x∈Z},B={x|x=
k2
,k∈A
},則A∩B=
{0,1,2}
{0,1,2}
(用列舉法表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知二元一次方程組
a1x+b1y=c1
a2x+b2y=c2
,若記
a
=
a1 
a2 
,
b
=( 
b1 
b2 
,
c
=
c1 
c2 
,則該方程組存在唯一解的條件為
a
b
不平行
a
b
不平行
(用
a
、
b
、
c
表示).

查看答案和解析>>

同步練習(xí)冊答案