已知數(shù)列{an}的前n項和Sn=3+2n,求an
分析:利用公式an=
S1,n=1
Sn-Sn-1,n≥2
可求出數(shù)列{an}的通項an
解答:解:a1=S1=3+2=5,
an=Sn-Sn-1=(3+2n)-(3+2n-1)=2n-1,
當n=1時,2n-1=1≠a1
an=
5,n=1
2n-1,n≥2
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用、數(shù)列的概念及簡單表示法,解題時要注意前n項和與通項公式之間關(guān)系式的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案