已知等差數(shù)列{an}中,a2=2,前4項(xiàng)之和S4=10.
(1)求該數(shù)列的通項(xiàng)公式;
(2)令數(shù)學(xué)公式,求數(shù)列{bn}的前n項(xiàng)和Tn

解:(1)設(shè)等差數(shù)列的首項(xiàng)為a1,公差是d
由題意可得,解可得
∴an=a1+(n-1)d=n
(2)∵=2n+n
Tn=(2+1)+(22+2)+…+(2n+n)
=(2+22+…+2n)+(1+2+…+n)
=
=
分析:(1)設(shè)等差數(shù)列的首項(xiàng)為a1,公差是d,則,解可求a1,d,進(jìn)而可求通項(xiàng)
(2)由=2n+n,則Tn=(2+1)+(22+2)+…+(2n+n),利用分組求和即可
點(diǎn)評:本題主要考查了等差數(shù)列的通項(xiàng)公式及求和公式、等比數(shù)列的求和公式及分組求和方法的簡單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案