已知f′(2)=1,則
lim
t→0
f(2-t)-f(2)
2t
的值為( 。
A、-
1
2
B、
1
2
C、1
D、-1
分析:由于已知f′(2)=1,故在x=2處的極限已知,將
lim
t→0
f(2-t)-f(2)
2t
的值用x=2處的極限表示出來,求值即可
解答:解:由題意
lim
t→0
f(2-t)-f(2)
2t
=-
1
2
lim
t→0
f(2)-f(2-t)
t
=-
1
2
f′(2)=-
1
2

故選A
點(diǎn)評(píng):本題考查極限及其運(yùn)算,解題的關(guān)鍵是對(duì)極限的表達(dá)式進(jìn)行變形,利用導(dǎo)數(shù)與極限的關(guān)系求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.
(1)求f(
1
2
)
的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,是否存在實(shí)數(shù)M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
對(duì)于一切正整數(shù)n均成立?若存在,求出M的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)椋?,+∞)且對(duì)任意正實(shí)數(shù)x、y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1且x>1時(shí)f(x)>0.
(1)求f(
12
)的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并證明;
(3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an}滿足f(Sn)=f(an)+f(an+1)-1(n∈N*),其中Sn是數(shù)列{an}的前n項(xiàng)和,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域是(0,+∞),且對(duì)任意的正實(shí)數(shù)x,y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且x>1時(shí),f(x)>0.
(1)求f(
12
)的值;
(2)判斷y=f(x)在(0,+∞)上的單調(diào)性,并給出你的證明;
(3)解不等式f(x2)>f(8x-6)-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當(dāng)x>1時(shí),f(x)>0.
(1)求f(
12
)
的值,試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(2)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an},它的前n項(xiàng)和是Sn,若a1=3,且對(duì)任意的正整數(shù)n,均滿足f(Sn)=f(an)+f(an+1)-1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案