6.已知點(diǎn)A(0,1),B(-2,1),向量$\overrightarrow e=(1,0)$,則$\overrightarrow{AB}$在$\overrightarrow e$方向上的投影為( 。
A.2B.1C.-1D.-2

分析 利用$\overrightarrow{AB}$在$\overrightarrow e$方向上的投影=$\frac{\overrightarrow{AB}•\overrightarrow{e}}{|\overrightarrow{e}|}$,即可得出.

解答 解:$\overrightarrow{AB}$=(-2,0),
則$\overrightarrow{AB}$在$\overrightarrow e$方向上的投影=$\frac{\overrightarrow{AB}•\overrightarrow{e}}{|\overrightarrow{e}|}$=$\frac{-2}{1}$=-2.
故選:D.

點(diǎn)評 本題考查了向量數(shù)量積的運(yùn)算性質(zhì)、向量投影定義及其計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(3)的x取值集合是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax2-lnx,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)是否存在實(shí)數(shù)a,使函數(shù)f(x)在區(qū)間(0,e]上的最小值為$\frac{3}{2}$,若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC的三頂點(diǎn)坐標(biāo)為A(3,0),B(0,4),C(0,0),D點(diǎn)的坐標(biāo)為(2,0),向△ABC內(nèi)部投一
點(diǎn)P,那么點(diǎn)P落在△ABD內(nèi)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.乒乓球是我國的國球,在2016年巴西奧運(yùn)會(huì)上盡領(lǐng)風(fēng)騷,包攬?jiān)擁?xiàng)目全部金牌,現(xiàn)某市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同,甲家每張球臺每小時(shí)6元;乙家按月計(jì)費(fèi),一個(gè)月中20小時(shí)以內(nèi)(含20小時(shí))每張球臺90元,超過20小時(shí)的部分,每張球臺每小時(shí)2元,某公司準(zhǔn)備下個(gè)月從這兩家中的一家租一張球臺開展活動(dòng),其活動(dòng)時(shí)間不少于12小時(shí),也不超過30小時(shí).
(Ⅰ)設(shè)在甲家租一張球臺開展活動(dòng)x小時(shí)的收費(fèi)為 f(x)元(12≤x≤30),在乙家租一張球臺開展活動(dòng)x小時(shí)的收費(fèi)為g(x)元(12≤x≤30),試求f(x)與g(x)的解析式;
(II)若該公司的活動(dòng)時(shí)間大于15小時(shí),選擇哪家比較合算?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.向高為H的水瓶(形狀如圖)中注水,注滿為止,則水深h與注水量v的函數(shù)關(guān)系的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)e為自然對數(shù)的底數(shù),若函數(shù)f(x)=ex(2-ex)+(a+2)•|ex-1|-a2存在三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=-\frac{1}{3}{x^3}+{x^2}+({{m^2}-1})x$(x∈R),其中m>0為常數(shù).
(1)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知空間四邊形ABCD中,AB=CD=6,BC=DA=8,BD=AC=7,求異面直線AB與CD所成的角.

查看答案和解析>>

同步練習(xí)冊答案