精英家教網 > 高中數學 > 題目詳情

如圖所示,A為橢圓=1(a>b>0)上的一個動點,弦AB、AC分別過焦點F1、F2.當AC垂直于x軸時,恰好AF1∶AF2=3∶1.

(1)求該橢圓的離心率;

(2)設=λ1,AF2=λ2,試判斷λ1+λ2是否為定值?若是,則求出該定值;若不是,請說明理由.

答案:
解析:

  解:(1)當AC垂直于x軸時,|AF1|∶|AF2|=3∶1.

  由|AF1|+|AF2|=2a,得|AF1|=,|AF2|=

  在Rt△AF1F2中,|AF1|2=|AF2|2+(2c)2

  所以()2=()2+(2c)2,由此解得e=

  (2)由e=,則,b=c,焦點坐標為F1(-b,0),F2(b,0),則橢圓方程為=1,化簡得x2+2y2=2b2

  設A(x0,y0),B(x1,y1),C(x2,y2),

 、偃糁本AC的斜率存在,則直線AC方程為y=(x-b),代入橢圓方程有(3b2-2bx0)y2+2by0(x0-b)y-b2y02=0.

  由韋達定理,得y0y2

  所以y2

  所以λ2,同理,可得λ1,故λ1+λ2=6.

 、谌糁本AC⊥x軸,x0=b,λ2=1,λ1=5,

  ∴λ1+λ2=6.

  綜上所述,λ1+λ2是定值6.

  解析:本題在解決過程中要注意充分利用橢圓的定義以及向量與相關的線段長度間的關系,從而將問題解決.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的3倍且經過點M(3,1).平行于OM的直線l在y軸上的截距為m(m≠0),且交橢圓于A,B兩不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知橢圓C:x2+
y2
a2
=1(a>1)的離心率為e,點F為其下焦點,點A為其上頂點,過F的直線l:y=mx-c(其中c=
a2-1
與橢圓C相交于P,Q兩點,且滿足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)試用a表示m2;
(2)求e的最大值;
(3)若e∈(
1
3
,
1
2
),求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖所示:已知橢圓方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A,B是橢圓與斜軸的兩個交點,F是橢圓的焦點,且△ABF為直角三角形.
(1)求橢圓離心率;
(2)若橢圓的短軸長為2,過F的直線與橢圓相交的弦長為
3
2
2
,試求弦所在直線的方程.

查看答案和解析>>

科目:高中數學 來源:全優(yōu)設計選修數學-1-1蘇教版 蘇教版 題型:044

如圖所示,A為橢圓=1(a>b0)上的一個動點,弦AB、AC分別過焦點F1、F2.當AC垂直于x軸時,恰好AF1∶AF2=3∶1.

(1)求該橢圓的離心率;

(2)設,試判斷λ1+λ2是否為定值?若是,則求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案