【題目】已知函數(shù)f(x)的定義域為R,f′(x)為函數(shù)f(x)的導函數(shù),當x∈[0.+∞)時,2sinxcosx﹣f′(x)>0且x∈R,f(﹣x)+f(x)+cos2x=1.則下列說法一定正確的是(
A. ﹣f(﹣ )> ﹣f(﹣
B. ﹣f(﹣ )> ﹣f(﹣
C. ﹣f( )> ﹣f(
D. ﹣f(﹣ )> ﹣f(

【答案】B
【解析】解:令F(x)=sin2x﹣f(x),則F′(x)=2sinxcosx﹣f′(x)>0,x∈[0.+∞)時.

∴F(x)在x∈[0,+∞)上單調(diào)遞增.又x∈R,f(﹣x)+f(x)+cos2x=1.

∴f(﹣x)+f(x)=2sin2x,

∴sin2(﹣x)﹣f(﹣x)=sin2x﹣2sin2x+f(x)=﹣[sin2x﹣f(x)],

故F(x)為奇函數(shù),

∴F(x)在R上單調(diào)遞增,∴ >F

﹣F ,

故選:B.

【考點精析】關(guān)于本題考查的基本求導法則,需要了解若兩個函數(shù)可導,則它們和、差、積、商必可導;若兩個函數(shù)均不可導,則它們的和、差、積、商不一定不可導才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】直線 與圓x2+y2=1相交于A、B兩點(其中a,b是實數(shù)),且△AOB是直角三角形(O是坐標原點),則點P(a,b)與點(0,1)之間距離的最小值為(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學中文系共有本科生5000人,其中一、二、三、四年級的學生比為5:4:3:1,要用分層抽樣的方法從該系所有本科生中抽取一個容量為260的樣本,則應抽二年級的學生(
A.100人
B.60人
C.80人
D.20人

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足an+1+(﹣1)nan=3n﹣1,則{an}的前60項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,對任意的x1<x2 , 則f(x1)<f(x2)成立的充要條件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) f(x)=2lnx+x2﹣ax. (Ⅰ)當a=5時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)設A(x1 , y1),B(x2 , y2)是曲線y=f(x)圖象上的兩個相異的點,若直線AB的斜率k>1恒成立,求實數(shù)a的取值范圍;
(Ⅲ)設函數(shù)f(x)有兩個極值點x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個整數(shù),則實數(shù)k的取值范圍為(
A.( ﹣2,
B.( ﹣2, ]
C.( ﹣1]
D.( , ﹣1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+1滿足f(﹣1)=0,且x∈R時,f(x)的值域為[0,+∞).
(1)求f(x)的表達式;
(2)設函數(shù)g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]時是單調(diào)函數(shù),求實數(shù)k的取值范圍;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)是( ) ①若f(x)= +a為奇函數(shù),則a= ;
②“在△ABC中,若sinA>sinB,則A>B”的逆命題是假命題;
③“三個數(shù)a,b,c成等比數(shù)列”是“b= ”的既不充分也不必要條件;
④命題“x∈R,x3﹣x2+1≤0”的否定是“x0∈R,x03﹣x02+1>0”.
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習冊答案