分析 (1)由f(-x)=f(x),可求得a=1.由f(x)<$\frac{5}{2}$,即2x+$\frac{1}{{2}^{x}}$<$\frac{5}{2}$,即可求得不等式f(x)<$\frac{5}{2}$的解集為(-1,1);
(2)由f(2x)≥mf(x)-18得m≤$\frac{f(2x)+18}{f(x)}$=$\frac{{{(2}^{x}+\frac{1}{{2}^{x}})}^{2}-2+18}{{2}^{x}+\frac{1}{{2}^{x}}}$=f(x)+$\frac{16}{f(x)}$,利用基本不等式可得f(x)+$\frac{16}{f(x)}$≥8,從而可求得實(shí)數(shù)m的最大值及此時(shí)x的取值.
解答 解:(1)f(x)的定義域?yàn)镽,且是偶函數(shù),∴f(-x)=f(x),即2-x+$\frac{a}{{2}^{-x}}$=2x+$\frac{a}{2^x}$,∴a=1.
f(x)<$\frac{5}{2}$,即2x+$\frac{1}{{2}^{x}}$<$\frac{5}{2}$,整理得:$\frac{1}{2}$<2x<2,∴-1<x<1.
∴不等式f(x)<$\frac{5}{2}$的解集為(-1,1)…6分
(2)∵f(x)=2x+$\frac{1}{{2}^{x}}$≥2,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),…7分
由f(2x)≥mf(x)-18得m≤$\frac{f(2x)+18}{f(x)}$=$\frac{{{(2}^{x}+\frac{1}{{2}^{x}})}^{2}-2+18}{{2}^{x}+\frac{1}{{2}^{x}}}$=f(x)+$\frac{16}{f(x)}$…9分
∵f(x)+$\frac{16}{f(x)}$≥8,當(dāng)且僅當(dāng)f(x)=4時(shí)取等號(hào),
∴實(shí)數(shù)m的最大值為8.…10分
由2x+$\frac{1}{{2}^{x}}$=4得:2x=2±$\sqrt{3}$,
∴x=${log}_{2}(2±\sqrt{3})$.
點(diǎn)評(píng) 本題考查函數(shù)恒成立問(wèn)題,考查指數(shù)函數(shù)的運(yùn)算性質(zhì)與基本不等式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$或$\frac{5π}{6}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40 | B. | 20 | C. | 80 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com