【題目】設(shè)橢圓 =1(a>b>0)的左焦點(diǎn)為F,離心率為 ,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為 .
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左,右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若 =8,求k的值.
【答案】
(1)解:根據(jù)橢圓方程為 .
∵過焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長(zhǎng)為 ,
∴當(dāng)x=﹣c時(shí), ,得y=± ,
∴ = ,
∵離心率為 ,∴ = ,
解得b= ,c=1,a= .
∴橢圓的方程為 ;
(2)解:直線CD:y=k(x+1),
設(shè)C(x1,y1),D(x2,y2),
由 消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,
∴x1+x2=﹣ ,x1x2= ,又A(﹣ ,0),B( ,0),
∴
=(x1+ ,y1)( ﹣x2.﹣y2)+(x2+ ,y2)( ﹣x1.﹣y1),
=6﹣(2+2k2)x1x2﹣2k2(x1+x2)﹣2k2,
=6+ =8,解得k= .
【解析】(1)先根據(jù)橢圓方程的一般形式,令x=c代入求出弦長(zhǎng)使其等于 ,再由離心率為 ,可求出a,b,c的關(guān)系,進(jìn)而得到橢圓的方程.(2)直線CD:y=k(x+1),設(shè)C(x1 , y1),D(x2 , y2),由 消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,再由韋達(dá)定理進(jìn)行求解.求得 ,利用 =8,即可求得k的值.
【考點(diǎn)精析】利用一般式方程和橢圓的標(biāo)準(zhǔn)方程對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0);橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點(diǎn).
(1)求證:平面;
(2)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)若為線段的中點(diǎn),求證:平面;
(3)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)證明是等比數(shù)列,并求的通項(xiàng)公式;
(2)求;
(3)設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|1<x<6},B={x|2<x<10},C={x|5﹣a<x<a}.
(1)求A∪B,(RA)∩B;
(2)若CB,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)=a(a為常數(shù)).
(1)求a的值;
(2)若函數(shù)g(x)=|(2x+1)f(x)|﹣k有2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)若x∈[﹣2,﹣1]時(shí),不等式f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c有兩個(gè)零點(diǎn)1和﹣1.
(1)求f(x)的解析式;
(2)設(shè)g(x),試判斷函數(shù)g(x)在區(qū)間(﹣1,1)上的單調(diào)性并用定義證明;
(3)由(2)函數(shù)g(x)在區(qū)間(﹣1,1)上,若實(shí)數(shù)t滿足g(t﹣1)﹣g(﹣t)>0,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中)的圖象如圖所示:
(1)求函數(shù)的解析式及其對(duì)稱軸的方程;
(2)當(dāng)時(shí),方程有兩個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍,并求此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0
(1)若y=f(x)在[﹣ , ]上單調(diào)遞增,求ω的取值范圍;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R,且a<b)滿足:y=g(x)在[a,b]上至少含有30個(gè)零點(diǎn).在所有滿足上述條件的[a,b]中,求b﹣a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com