【題目】設(shè)函數(shù)
(Ⅰ)當(dāng) 時,討論 的單調(diào)性;
(Ⅱ)設(shè) ,若 恒成立,求 的取值范圍

【答案】解:(Ⅰ)由已知,當(dāng) 時, ,

上單調(diào)遞增,且 ,

時, 時, ,

上單調(diào)遞減,在 上單調(diào)遞增.

(Ⅱ)(方法一)由題可得, ,

,

,∴ 上單調(diào)遞增, , ,

使得 ,則 ,

,且 時, 時,

,∴ ,∴ ,∴ ,

的取值范圍是

(方法二)由題可得 恒成立,

,則

時, 時, ,

,∴ ,解得:

的取值范圍是


【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)法一:求出g(x)的導(dǎo)數(shù),得到g(x)的最小值,從而求出a的范圍即可;法二:問題轉(zhuǎn)化為恒成立,令,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的單調(diào)性的相關(guān)知識,掌握注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購物網(wǎng)站在2017年11月開展“全部6折”促銷活動,在11日當(dāng)天購物還可以再享受“每張訂單金額(6折后〕滿300元時可減免100元”.小淘在11日當(dāng)天欲購入原價48元(單價)的商品共42件,為使花錢總數(shù)最少,他最少需要下的訂單張數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)求 極值;
(2)當(dāng) 時, ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且

(1)求證:不論 為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )
A.函數(shù) 的圖象與直線 可能有兩個交點;
B.函數(shù) 與函數(shù) 是同一函數(shù);
C.對于 上的函數(shù) ,若有 ,那么函數(shù) 內(nèi)有零點;
D.對于指數(shù)函數(shù) ( )與冪函數(shù) ( ),總存在一個 ,當(dāng) 時,就會有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,漢諾塔問題是指有3根桿子A,BCB桿上有若干碟子,把所有碟子從B桿移到A桿上,每次只能移動一個碟子,大的碟子不能疊在小的碟子上面.把B桿上的4個碟子全部移到A桿上,最少需要移動( )次. ( )

A12 B15 C17 D19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則函數(shù) 滿足( )
A.最小正周期為
B.圖象關(guān)于點 對稱
C.在區(qū)間 上為減函數(shù)
D.圖象關(guān)于直線 對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:
①分類變量 的隨機(jī)變量 越大,說明“ 有關(guān)系”的可信度越大.
②以模型 去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè) ,將其變換后得到線性方程 ,則 的值分別是 和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為 中, ,則 .
④如果兩個變量 之間不存在著線性關(guān)系,那么根據(jù)它們的一組數(shù)據(jù) 不能寫出一個線性方程
正確的個數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)隨機(jī)變量X的概率分布列如表,則P(|X﹣3|=1)(

X

1

2

3

4

P

m


A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案