已知圓C在y軸上截得的弦為AB,A的坐標(biāo)為(0,5),B的坐標(biāo)為(0,-1),且圓心在直線x=4上,點P的坐標(biāo)為(-1,3).
(1)求圓心C的坐標(biāo)并寫出圓C的方程;
(2)直線l過P且與圓C相切時,求直線l的方程.
考點:直線與圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程
專題:計算題,直線與圓
分析:(1)利用條件直接求圓心C的坐標(biāo)求出半徑即可寫出圓C的方程;
(2)設(shè)出直線PQ的方程,利用直線PQ和圓相切,建立方程,即可求得結(jié)論.
解答: 解:(1)圓C在y軸上截得的弦為AB,A的坐標(biāo)為(0,5),B的坐標(biāo)為(0,-1),且圓心在直線x=4上,
所以圓心C的坐標(biāo)(4,2),圓的半徑為:
42+(2-5)2
=5,
所以圓C的方程:(x-4)2+(y-2)2=25;
(2)斜率不存在時,直線x=-1,滿足題意;
設(shè)直線PQ的方程為:y=kx+k+3,故圓心到直線l的距離d=
|5k+1|
k2+1
=5
解得k=
12
5
.直線l的方程為12x-5y+20=0
所以,直線l的方程為x=-1或12x-5y+20=0.
點評:本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-
m-1
x
(m∈R),函數(shù)g(x)=
α
x
+2lnx(α≠0,α∈R)在[
1
2
,+∞]上為增函數(shù).
(1)求α取值范圍;
(2)當(dāng)α最大時,如果m≥1,x≥1,求證:f(x)≥g(x);
(3)當(dāng)α=1時,設(shè)h(x)=
2e
x
,若在[1,e]上至少存在一個x0,使得得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù)
x3456
t2.5344.5
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=
b
x+
a
;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為92噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?(參考數(shù)據(jù):3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=f(x)的圖象關(guān)于y軸對稱,且f(x)=(x+2)2+1(x≥0),求x<0時f(x)的表達(dá)式,畫出函數(shù)y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)遞增等比數(shù)列{an}的前n項和為Sn,且a2=3,S3=13,數(shù)列{bn}滿足b1=a1,點P(bn,bn+1)在直線x-y+2=0上,cn=
bn
an
,數(shù)列{cn}的前n項和Tn
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{cn}的前n項和Tn;
(3)若Tn>2a-1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7名師生從左到右站成一排照相留念,1名老師,4名男生,2名女生,在下列情況,名有多少種不同的站法?
(1)2名女生必須相鄰而站;
(2)4名男生互不相鄰;
(3)甲生甲站在男生乙的左邊(不一定相鄰);
(4)甲生甲不站最左邊,女生乙不站最右邊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520名女性中6人患色盲.
(1)根據(jù)以上的數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)試問有多大把握認(rèn)為色盲與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動點,PC、PD是圓M的兩條切線,C、D為切點,求四邊形PCMD面積的最小值.
(3)若(x,y)在圓M上,求x2-2x+y2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①函數(shù)y=2sin(2x-
π
3
)的一條對稱軸是x=
12
;
②若sin(2x1-
π
4
)=sin(2x2-
π
4
),則x1-x2=kπ,其中k∈Z;
③正弦函數(shù)在第一象限為增函數(shù);
④函數(shù)y=tanx的圖象關(guān)于點(
π
2
,0)對稱.
以上四個命題中正確的有
 
(填寫正確命題前面的序號)

查看答案和解析>>

同步練習(xí)冊答案