【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為: ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線C1.
(1)求曲線C1的直角坐標(biāo)方程;
(2)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.
【答案】(1) (2)
【解析】試題分析:(1)先根據(jù)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;再根據(jù)圖像平移得曲線C1的直角坐標(biāo)方程;(2)先根據(jù)將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;再設(shè)直線參數(shù)方程,代入C1,最后根據(jù)參數(shù)幾何意義以及韋達(dá)定理求|PA|+|PB|的值.
試題解析:(Ⅰ)曲線的直角坐標(biāo)方程為,
所以曲線的直角坐標(biāo)方程為.
(Ⅱ)由直線的極坐標(biāo)方程,得,
所以直線的直角坐標(biāo)方程為,又點(diǎn)在直線上,
所以直線的參數(shù)方程為: ,t為參數(shù),
代入的直角坐標(biāo)方程得,
設(shè),對應(yīng)的參數(shù)分別為,
則,
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了增強(qiáng)高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學(xué)、外語3個(gè)科目成績和高中學(xué)業(yè)水平考試3個(gè)科目成績組成.保持統(tǒng)一高考的語文、數(shù)學(xué)、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機(jī)會.計(jì)入總成績的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報(bào)考高校要求和自身特長,在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.
(1)某高校某專業(yè)要求選考科目物理,考生若要報(bào)考該校該專業(yè),則有多少種選考科目的選擇;
(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績達(dá)到二級的概率都是0.8,且三人約定如果達(dá)到二級不參加第二次考試,達(dá)不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,側(cè)面為矩形, , , 是的中點(diǎn), 與交于點(diǎn),且平面.
(1)證明: ;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率是,且直線: 被橢圓截得的弦長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與圓: 相切:
(i)求圓的標(biāo)準(zhǔn)方程;
(ii)若直線過定點(diǎn),與橢圓交于不同的兩點(diǎn)、,與圓交于不同的兩點(diǎn)、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論在其定義域上的單調(diào)性;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下兩個(gè)焦點(diǎn)分別為, ,過點(diǎn)與軸垂直的直線交橢圓于、兩點(diǎn), 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線: 與軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是周期為4的偶函數(shù),當(dāng)時(shí), ,則不等式在區(qū)間上的解集為( )
A. (1,3) B. (-1,1) C. (-1,0)∪(1,3) D. (-1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的滿足,前項(xiàng)的和為,且.
(1)求的值;
(2)設(shè),證明:數(shù)列是等差數(shù)列;
(3)設(shè),若,求對所有的正整數(shù)都有成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
參考公式與臨界值表: .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com