精英家教網 > 高中數學 > 題目詳情

如圖,F1和F2分別是雙曲線的兩個焦點,A和B是以O為圓心,以|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則雙曲線的離心率為

[  ]

A.

B.

C.

D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
2
F1
、F2分別為左、右焦點,M為左準線與漸近線在第二象限內的交點,且
F1M
.
F2M
=-
1
4

(I)求雙曲線的方程;
(II)設A(m,0)和B(
1
m
,0)
(0<m<1)是x軸上的兩點.過點A作斜率不為0的直線l,使得l交雙曲線于C、D兩點,作直線BC交雙曲線于另一點E.證明直線DE垂直于x軸.中心O為圓心,分別以a和b為半徑作大圓和.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•溫州二模)如圖,F1,F2是橢圓
x22
+y2=1的左、右焦點,M,N是以F1F2為直徑的圓上關于X軸對稱的兩個動點.
(I)設直線MF1、NF2的斜率分別為k1,k2,求k1•k2值;
(II)直線MF1和NF2與橢圓的交點分別為A,B和C、D.問是若存在實數λ,使得λ(|AB|+|CD|)=|AB|•|CD|恒成立.若存在,求實數λ的值.若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省福州市高三年級第二次月考數學試題(理科) 題型:解答題

(本小題滿分14分)

    如圖,F1、F2分別是橢圓的左右焦點,M為橢圓上一點,MF2垂直于軸,橢圓下頂點和右頂點分別為A,B,且

   (1)求橢圓的離心率;

  

(2)過F2作OM垂直的直線交橢圓于點P,Q,若,求橢圓方程。

 

查看答案和解析>>

科目:高中數學 來源:貴州省模擬題 題型:解答題

如圖,F1,F2分別是橢圓(a>b>0)的左、右焦點,M為橢圓上一點,MF2垂直于x軸,橢圓下頂點和右頂點分別為A、B,且OM∥AB,
(1)求橢圓的離心率;
(2)過F2作于OM垂直的直線交橢圓于點P、Q,若,求橢圓的方程。

查看答案和解析>>

科目:高中數學 來源:2012年浙江省溫州市高考數學二模試卷(理科)(解析版) 題型:解答題

如圖,F1,F2是橢圓+y2=1的左、右焦點,M,N是以F1F2為直徑的圓上關于X軸對稱的兩個動點.
(I)設直線MF1、NF2的斜率分別為k1,k2,求k1•k2值;
(II)直線MF1和NF2與橢圓的交點分別為A,B和C、D.問是若存在實數λ,使得λ(|AB|+|CD|)=|AB|•|CD|恒成立.若存在,求實數λ的值.若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案