求二次函數(shù)y=-2x2+6x在定義域x∈[-2,1]上的值域.
分析:先將二次函數(shù)進(jìn)行配方,然后根據(jù)開口方向和對稱軸得到函數(shù)在定義域x∈[-2,1]上的單調(diào)性,從而求出函數(shù)的最值,得到值域.
解答:解:二次函數(shù)y=f(x)=-2x2+6x=-2(x-
3
2
2+
9
2
,
3
2
∉[-2,1]且
3
2
>1,
∴[-2,1]為y=-2x2+6x的單調(diào)減區(qū)間,
∵f(-2)=-20,f(1)=4,
∴二次函數(shù)y=-2x2+6x在定義域x∈[-2,1]上的值域?yàn)閇-20,4].
點(diǎn)評:本題考查二次函數(shù)的值域,屬于求二次函數(shù)的最值問題,考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=f(x)滿足:①f(0)=1;②f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的定義域?yàn)镽,f(1)=2,在x=t處取得最值,若y=g(x)為一次函數(shù),且f(x)+g(x)=x2+2x-3.
(1)求f(x)的解析式;
(2)若x∈[-1,2]時,f(x)≥-1恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:無論m取任何實(shí)數(shù)時,方程總有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱.
①求這個二次函數(shù)的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)的條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立.求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=g(x)的導(dǎo)函數(shù)的圖象與直線y=2x平行,且y=g(x)在x=-1處取得極小值m-1(m≠0).設(shè)f(x)=
g(x)
x
.若曲線y=f(x)上的點(diǎn)P到點(diǎn)Q(0,2)的距離的最小值為
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象與x軸相切于點(diǎn)(-1,0),其導(dǎo)函數(shù)y=f′(x)與直線y=2x平行.
(1)求y=f(x)的解析式;
(2)已知
lim
x→+∞
lnx
x
=0
,試討論方程kf′(x)-lnf(x)=0(k∈R)在區(qū)間(-1,+∞)上解得個數(shù).

查看答案和解析>>

同步練習(xí)冊答案