設(shè)橢圓 )的一個(gè)頂點(diǎn)為,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線(xiàn)  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線(xiàn) ,使得 ,若存在,求出直線(xiàn)  的方程;若不存在,說(shuō)明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線(xiàn)與橢圓必相交.

①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn),且,.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線(xiàn)的方程為 

 

【答案】

(1) (2)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1
的一個(gè)焦點(diǎn)與拋物線(xiàn)y=
1
8
x2
的焦點(diǎn)相同,離心率為
1
2
,則橢圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線(xiàn)x+
3
y+3=0
相切.
(1)求橢圓的方程;
(2)設(shè)O為橢圓的中心,過(guò)F點(diǎn)作直線(xiàn)交橢圓于M、N兩點(diǎn),在橢圓上是否存在點(diǎn)T,使得
OM
+
ON
+
OT
=
0
,如果存在,則求點(diǎn)T的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)橢圓
x2
2
+y2=1
的一個(gè)焦點(diǎn)作傾斜角為45°的直線(xiàn)l,交橢圓于A、B兩點(diǎn).設(shè)O為坐標(biāo)原點(diǎn),則
OA
OB
等于
-
1
3
-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是雙曲線(xiàn)x2-
y2
24
=1
的兩個(gè)焦點(diǎn),P是雙曲線(xiàn)與橢圓
x2
49
+
y2
24
=1
的一個(gè)公共點(diǎn),則△PF1F2的面積等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案