分析 (1)先將函數(shù)f(x)展開,然后對函數(shù)f(x)進(jìn)行求導(dǎo),解關(guān)于導(dǎo)函數(shù)的不等式,再由函數(shù)的單調(diào)性進(jìn)行驗證從而最終確定答案.
(2)根據(jù)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減可求單調(diào)區(qū)間.
解答 解:(1)∵f(x)=ax(x-1)2=ax3-2ax2+ax,
∴f′(x)=3ax2-4ax+a.
由f′(x)=a(3x2-4x+1)=a(3x-1)(x-1).
①當(dāng)a>0時,令f′(x)>0,解得:x>1或x<$\frac{1}{3}$,令f′(x)<0,解得:$\frac{1}{3}$<x<1,
∴f(x)在(-∞,$\frac{1}{3}$)遞增,在($\frac{1}{3}$,1)遞減,在(1,+∞)遞增,
∴當(dāng)x=$\frac{1}{3}$時,f(x)有極大值4,即$\frac{1}{3}$a${(\frac{1}{3}-1)}^{2}$=4,
解得:a=27,符合題意;
②當(dāng)a<0時,令f′(x)<0,解得:x>1或x<$\frac{1}{3}$,令f′(x)>0,解得:$\frac{1}{3}$<x<1,
∴f(x)在(-∞,$\frac{1}{3}$)遞減,在($\frac{1}{3}$,1)遞增,在(1,+∞)遞減,
∴當(dāng)x=1時,f(x)有極大值4,即$\frac{1}{3}$a•0=4,不成立,
綜上:a=27;
(2)由(1)得:f(x)在(-∞,$\frac{1}{3}$)遞增,在($\frac{1}{3}$,1)遞減,在(1,+∞)遞增.
點評 本題主要考查函數(shù)的極值、單調(diào)性與其導(dǎo)函數(shù)之間的關(guān)系.屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com