10.已知三棱錐O-ABC,A、B、C三點均在球心為O的球表面上,AB=BC=1,∠ABC=120°,三棱錐O-ABC的體積為$\frac{\sqrt{5}}{4}$,則球O的體積是$\frac{256}{3}$π.

分析 求出底面三角形的面積,利用三棱錐的體積求出O到底面的距離,求出底面三角形的所在平面圓的半徑,通過勾股定理求出球的半徑,即可求解球的體積.

解答 解:三棱錐O-ABC,A、B、C三點均在球心O的表面上,且AB=BC=1,
∠ABC=120°,AC=$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$×1×1×sin120°=$\frac{\sqrt{3}}{4}$,
∵三棱錐O-ABC的體積為$\frac{\sqrt{5}}{4}$,
△ABC的外接圓的圓心為G,
∴OG⊥⊙G,
外接圓的半徑為:GA=$\frac{\sqrt{3}}{2sin120°}$=1,
∴$\frac{1}{3}$S△ABC•OG=$\frac{\sqrt{5}}{4}$,即$\frac{1}{3}×\frac{\sqrt{3}}{4}$OG=$\frac{\sqrt{5}}{4}$,
∴OG=$\sqrt{15}$,
球的半徑為:$\sqrt{1+15}$=4.
球的體積:$\frac{4}{3}$π•43=$\frac{256}{3}$π.
故答案為:$\frac{256}{3}$π.

點評 本題考查球的體積的求法,球的內(nèi)含體與三棱錐的關系,考查空間想象能力以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.設x∈R,定義符號函數(shù)sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則函數(shù)f(x)=|x|sgnx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.等差數(shù)列{an}中,Sn為其前n項和,已知a2=2,S5=15,數(shù)列{bn},b1=1,對任意n∈N+滿足bn+1=2bn+1.
(Ⅰ)數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設cn=$\frac{a_n}{{{b_n}+1}}$,設數(shù)列{cn}的前n項和Tn,證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.命題“?x>0,使2x>3x”的否定是(  )
A.?x>0,使2x≤3xB.?x>0,使2x≤3xC.?x≤0,使2x≤3xD.?x≤0,使2x≤3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=$\sqrt{6}$,
(理科做)求二面角B-AC-A1的余弦值.
(文科做)求三棱錐A-CA1B的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},
(1)若a=-1,求A∩B
(2)若B⊆∁RA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知:四邊形ABCD是空間四邊形,E,H分別是邊AB,AD的中點,F(xiàn),G分別是邊CB,CD上的點,且$\frac{BF}{BC}$=$\frac{DG}{DC}$=$\frac{2}{3}$,求證:直線FE、GH、AC交于一點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知圓O:(x-3)2+(y-4)2=1,P(x,y)為圓上的動點,則x-y的最大值為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,且($\overrightarrow{a}+\overrightarrow$)⊥(2$\overrightarrow{a}-3\overrightarrow$),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.45°B.60°C.90°D.135°

查看答案和解析>>

同步練習冊答案