【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求多面體的體積.
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)根據(jù)全等的等腰梯形和已知條件得到且,由此證得四邊形為平行四邊形. 分別取,的中點(diǎn),,連接,通過(guò)證明四點(diǎn)共面,且,且相交,由此證得平面,從而證得,由此證得四邊形為矩形.(2)連結(jié),,作,垂足為,則.先證明平面,然后證明平面,由此求得點(diǎn)到平面的距離、點(diǎn)到平面的距離,分別求得和的體積,由此求得多面體的體積.
(1)證明:∵四邊形和四邊形是兩個(gè)全等的等腰梯形,
∴且,∴四邊形為平行四邊形.
分別取,的中點(diǎn),.
∵,為的中點(diǎn),∴,同理,∴.
∵為的中點(diǎn),為的中點(diǎn),∵,且.
∴,,,四點(diǎn)共面,且四邊形是以,為底的梯形.
∵,,且,是平面內(nèi)的相交線(xiàn),∴平面.
∵平面,∴,又,∴.
∴四邊形為矩形.
(2)解:連結(jié),,作,垂足為,則.
∵,,∴.
在中,.
∵,平面,平面,∴平面.
∵平面平面,,平面平面,平面,
∴平面,∴點(diǎn)到平面的距離為2,同理,點(diǎn)到平面的距離為2,
則,;
,.
故多面體的體積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.
(1)求函數(shù)的解析式,并證明:.
(2)已知,且函數(shù)與函數(shù)的圖象交于,兩點(diǎn),且線(xiàn)段的中點(diǎn)為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校命制了一套調(diào)查問(wèn)卷(試卷滿(mǎn)分均為100分),并對(duì)整個(gè)學(xué)校的學(xué)生進(jìn)行了測(cè)試.現(xiàn)從這些學(xué)生的成績(jī)中隨機(jī)抽取了50名學(xué)生的成績(jī),按照分成5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績(jī)均不低于50分).
(1)求頻率分布直方圖中x的值,并估計(jì)所抽取的50名學(xué)生成績(jī)的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)用樣本估計(jì)總體,若該校共有2000名學(xué)生,試估計(jì)該校這次測(cè)試成績(jī)不低于70分的人數(shù);
(3)若利用分層抽樣的方法從樣本中成績(jī)不低于70分的學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取3人,試求成績(jī)?cè)?/span>的學(xué)生至少有1人被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,,,,平面,點(diǎn)在棱上.
(1)求證:平面平面;
(2)若,求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列中,,且對(duì)任意,都有.
(1)計(jì)算,,,由此推測(cè)的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(2)若(),求無(wú)窮數(shù)列的前項(xiàng)之和與的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)公司生產(chǎn)某款手機(jī),如果年返修率不超過(guò)千分之一,則生產(chǎn)部門(mén)當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2010-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)量(萬(wàn)臺(tái)) | 3 | 4 | 5 | 6 | 7 | 7 | 9 | 10 | 12 |
產(chǎn)品年利潤(rùn)(千萬(wàn)元) | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.8 | 7.5 | 7.9 | 9.1 |
年返修量(臺(tái)) | 47 | 42 | 48 | 50 | 92 | 83 | 72 | 87 | 90 |
(1)從該公司2010-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門(mén)獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;
(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(rùn)(千萬(wàn)元)關(guān)于年生產(chǎn)量(萬(wàn)臺(tái))的線(xiàn)性回歸方程(精確到0.01).部分計(jì)算結(jié)果:,,.
附:;線(xiàn)性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,過(guò)點(diǎn)的直線(xiàn)l與E交于A,B兩點(diǎn).當(dāng)l過(guò)點(diǎn)F時(shí),直線(xiàn)l的斜率為,當(dāng)l的斜率不存在時(shí),.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠BAD=60°,PA=PD=AD=2,點(diǎn)M在線(xiàn)段PC上,且PM=2MC,N為AD的中點(diǎn).
(1)求證:AD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱錐PNBM的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com