(2013•海淀區(qū)一模)在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°,點N在線段PB上,且PN=
2

(Ⅰ)求證:BD⊥PC;
(Ⅱ)求證:MN∥平面PDC;
(Ⅲ)求二面角A-PC-B的余弦值.
分析:(Ⅰ)由正三角形的性質(zhì)可得BD⊥AC,利用線面垂直的性質(zhì)可知PA⊥BD,再利用線面垂直的判定定理即可證明BD⊥PC;
(Ⅱ)利用已知條件分別求出BM、MD、PB,得到
BM
MD
=
BN
NP
,即可得到MN∥PD,再利用線面平行的判定定理即可證明;
(Ⅲ)通過建立空間直角坐標(biāo)系,利用兩個平面的法向量的夾角即可得到二面角的平面角.
解答:證明:(I)∵△ABC是正三角形,M是AC中點,
∴BM⊥AC,即BD⊥AC.
又∵PA⊥平面ABCD,∴PA⊥BD.
又PA∩AC=A,∴BD⊥平面PAC.
∴BD⊥PC.
(Ⅱ)在正△ABC中,BM=2
3

在△ACD中,∵M為AC中點,DM⊥AC,∴AD=CD.
∠ADC=120°,∴DM=
2
3
3
,
BM
MD
=
3
1

在等腰直角△PAB中,PA=AB=4,PB=4
2

BN
NP
=
3
1
,
BN
NP
=
BM
MD
,
∴MN∥PD.
又MN?平面PDC,PD?平面PDC,
∴MN∥平面PDC.
(Ⅲ)∵∠BAD=∠BAC+∠CAD=90°,
∴AB⊥AD,分別以AB,AD,AP為x軸,y軸,z軸建立如圖的空間直角坐標(biāo)系,
∴B(4,0,0),C(2,2
3
,0)
D(0,
4
3
3
,0)
,P(0,0,4).
由(Ⅱ)可知,
DB
=(4,-
4
3
3
,0)
為平面PAC的法向量.
PC
=(2,2
3
,-4)
,
PB
=(4,0,-4)

設(shè)平面PBC的一個法向量為
n
=(x,y,z)
,
n
PC
=0
n
PB
=0
,即
2x+2
3
y-4z=0
4x-4z=0
,
令z=3,得x=3,y=
3
,則平面PBC的一個法向量為
n
=(3,
3
,3)

設(shè)二面角A-PC-B的大小為θ,則cosθ=
n
DB
|
n
| |
DB
|
=
7
7

所以二面角A-PC-B余弦值為
7
7
點評:熟練掌握正三角形的性質(zhì)、線面垂直的判定與性質(zhì)定理、平行線分線段成比例在三角形中的逆定理應(yīng)用、通過建立空間直角坐標(biāo)系并利用兩個平面的法向量的夾角得到二面角的平面角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)已知a>0,下列函數(shù)中,在區(qū)間(0,a)上一定是減函數(shù)的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又∠CAD=30°,PA=AB=4,點N在線段PB上,且
PN
NB
=
1
3

(Ⅰ)求證:BD⊥PC;
(Ⅱ)求證:MN∥平面PDC;
(Ⅲ)設(shè)平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)函數(shù)f(x)=
13
x3-kx,其中實數(shù)k為常數(shù).
(I) 當(dāng)k=4時,求函數(shù)的單調(diào)區(qū)間;
(II) 若曲線y=f(x)與直線y=k只有一個交點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)已知圓M:(x-
2
2+y2=
7
3
,若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右頂點為圓M的圓心,離心率為
2
2

(I)求橢圓C的方程;
(II)已知直線l:y=kx,若直線l與橢圓C分別交于A,B兩點,與圓M分別交于G,H兩點(其中點G在線段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

同步練習(xí)冊答案