(1)設(shè)扇形的周長是定值為,中心角.求證:當(dāng)時(shí)該扇形面積最大;
(2)設(shè).求證:

(1)詳見解析;(2)詳見解析.

解析試題分析:(1)由扇形周長為定值可得半徑與弧長關(guān)系(定值),而扇形面積,一般地求二元函數(shù)最值可消元化為一元函數(shù)(見下面詳解),也可考慮利用基本不等式,求出最值,并判斷等號(hào)成立 條件,從而得解;(2)這是一個(gè)雙變?cè)?)的函數(shù)求最值問題,由于這兩個(gè)變?cè)獩]有制約關(guān)系,所以可先將其中一個(gè)看成主元,另一個(gè)看成參數(shù)求出最值(含有另一變?cè)?,再求解這一變?cè)碌淖钪担门浞椒ɑ蚨魏瘮?shù)圖象法.
試題解析:(1)證明:設(shè)弧長為,半徑為,則,          2分

所以,當(dāng)時(shí),                                  5分
此時(shí),而
所以當(dāng)時(shí)該扇形面積最大                         7分
(2)證明:
                     9分
,∴,                        11分
∴當(dāng)時(shí),         14分
,所以,當(dāng)時(shí)取等號(hào),
.                                 16分
法二:
                            9分
,,                 11分
∴當(dāng)時(shí),
,                    14分
又∵,∴
當(dāng)時(shí)取等號(hào)
.                                             16分
考點(diǎn):扇形的周長和面積、三角函數(shù)、二次函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,
(1)求角C的大;
(2)若△ABC的外接圓直徑為1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的圖象關(guān)于直線對(duì)稱,其中
(1)求的解析式;
(2)將的圖象向左平移個(gè)單位,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)后得到的圖象;若函數(shù)的圖象與的圖象有三個(gè)交點(diǎn)且交點(diǎn)的橫坐標(biāo)成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為坐標(biāo)原點(diǎn),向量,,,點(diǎn)滿足.
(Ⅰ)記函數(shù),,討論函數(shù)的單調(diào)性,并求其值域;
(Ⅱ)若三點(diǎn)共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)圖像的對(duì)稱中心;
(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在銳角中,,,.
(I) 求角的大;
(II)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若的最大值為1.
(1)求的值,并求的單調(diào)遞增區(qū)間;
(2)在中,角、的對(duì)邊、,若,且,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的最小正周期和最小值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小值和最小正周期;
(Ⅱ)設(shè)的內(nèi)角、、的對(duì)邊分別為、、,,若向量與向量共線,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案