【題目】(本題滿分12分)
已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的距離的最
小值為,離心率為。
(I)求橢圓的方程;
(Ⅱ)過點(1,0)作直線交于、兩點,試問:在軸上是否存在一個定點,使為定值?若存在,求出這個定點的坐標(biāo);若不存在,請說明理由。
【答案】
解:(I)設(shè)橢圓E的方程為
由已知得:
2分
橢圓E的方程為················································3分
(Ⅱ)解:假設(shè)存在符合條件的點,又設(shè),則:
···················································5分
①當(dāng)直線的斜率存在時,設(shè)直線的方程為:,則
由
得
7分
所以
·················································9分
對于任意的值,為定值,
所以,得,
所以;······················································11分
②當(dāng)直線的斜率不存在時,直線
由得
綜上述①②知,符合條件的點存在,起坐標(biāo)為。························12分
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某服裝商場,當(dāng)某一季節(jié)即將來臨時,季節(jié)性服裝的價格呈現(xiàn)上升趨勢.設(shè)一種服裝原定價為每件70元,并且每周(7天)每件漲價6元,5周后開始保持每件100元的價格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時,平均每周每件降價6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進(jìn)價(單位:元)與周次之間的關(guān)系為,,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價格-每件進(jìn)價)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且點在函數(shù)的圖象上.
(1)求函數(shù)的解析式,并在圖中的直角坐標(biāo)系中畫出函數(shù)的圖象;
(2)求不等式的解集;
(3)若方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線x2-=1.
(1)若一橢圓與該雙曲線共焦點,且有一交點P(2,3),求橢圓方程.
(2)設(shè)(1)中橢圓的左、右頂點分別為A、B,右焦點為F,直線l為橢圓的右準(zhǔn)線,N為l上的一動點,且在x軸上方,直線AN與橢圓交于點M.若AM=MN,求∠AMB的余弦值;
(3)設(shè)過A、F、N三點的圓與y軸交于P、Q兩點,當(dāng)線段PQ的中點為(0,9)時,求這個圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計結(jié)果如下表所示.
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布, 近似為這1000人得分的平均值值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示),請用正態(tài)分布的知識求;
(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案::
(。┑梅植坏陀的可以獲贈2次隨機(jī)話費,得分低于的可以獲贈1次隨機(jī)話費;
(ⅱ)每次獲贈送的隨機(jī)話費和對應(yīng)的概率為:
贈送的隨機(jī)話費(單元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
現(xiàn)有市民甲要參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
,若,則
①;
②;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是雙曲線的左頂點、右焦點,過的直線與的一條漸近線垂直且與另一條漸近線和軸分別交于,兩點.若,則的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)平面中, 的兩個頂點為,平面內(nèi)兩點、同時滿足:①;②;③.
(1)求頂點的軌跡的方程;
(2)過點作兩條互相垂直的直線,直線與點的軌跡相交弦分別為,設(shè)弦的中點分別為.
①求四邊形的面積的最小值;
②試問:直線是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù).
(1)求不等式的解集;
(2)若不等式對任意實數(shù)成立,求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= lnx-x+,其中a>0.
(1)若f(x)在(0,+∞)上存在極值點,求a的取值范圍;
(2)設(shè)a∈(1,e],當(dāng)x1∈(0,1),x2∈(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com